BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 8383068)

  • 1. Reduction of 1-nitroso-2-naphthol by NADPH in the presence of liver microsomes.
    Leskovac V; Peggins JO; Trivić S; Svircević J; Popović M; Stupar M
    Int J Biochem; 1993 Feb; 25(2):279-86. PubMed ID: 8383068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary toxic effects of anthraquinone-2-sulfonic acid in rat liver microsomes.
    Leskovac V; Trivić S; Peggins JO
    Toxicol Lett; 1995 Jul; 78(2):107-10. PubMed ID: 7618176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox cycling of resorufin catalyzed by rat liver microsomal NADPH-cytochrome P450 reductase.
    Dutton DR; Reed GA; Parkinson A
    Arch Biochem Biophys; 1989 Feb; 268(2):605-16. PubMed ID: 2464338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar.
    Winston GW; Church DF; Cueto R; Pryor WA
    Arch Biochem Biophys; 1993 Aug; 304(2):371-8. PubMed ID: 8394056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW; Feierman DE; Cederbaum AI
    Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vanadate-dependent NAD(P)H oxidation by microsomal enzymes.
    Reif DW; Coulombe RA; Aust SD
    Arch Biochem Biophys; 1989 Apr; 270(1):137-43. PubMed ID: 2494940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of ferric complexes with rat liver nuclei to catalyze NADH-and NADPH-Dependent production of oxygen radicals.
    Kukiełka E; Puntarulo S; Cederbaum AI
    Arch Biochem Biophys; 1989 Sep; 273(2):319-30. PubMed ID: 2774554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased NADPH- and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment.
    Rashba-Step J; Turro NJ; Cederbaum AI
    Arch Biochem Biophys; 1993 Jan; 300(1):401-8. PubMed ID: 8380969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of rat and human cytochrome P4502E1 catalytic activity and reactive oxygen radical formation by nitric oxide.
    Gergel D; Misík V; Riesz P; Cederbaum AI
    Arch Biochem Biophys; 1997 Jan; 337(2):239-50. PubMed ID: 9016819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of cytosolic superoxide dismutase as a stimulator in anthranilamide hydroxylation by a microsomal monooxygenase system in rat liver.
    Ohta Y; Ishiguro I; Naito J; Shinohara R
    J Biochem; 1984 Nov; 96(5):1323-36. PubMed ID: 6441802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1-Hydroxyethyl radical formation during NADPH- and NADH-dependent oxidation of ethanol by human liver microsomes.
    Rao DN; Yang MX; Lasker JM; Cederbaum AI
    Mol Pharmacol; 1996 May; 49(5):814-21. PubMed ID: 8622631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superoxide dismutase and catalase enhance autoxidation during one-electron reduction of aminochrome by NADPH-cytochrome P-450 reductase.
    Baez S; Linderson Y; Segura-Aguilar J
    Biochem Mol Med; 1995 Feb; 54(1):12-8. PubMed ID: 7551811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ESR studies on the production of reactive oxygen intermediates by rat liver microsomes in the presence of NADPH or NADH.
    Rashba-Step J; Turro NJ; Cederbaum AI
    Arch Biochem Biophys; 1993 Jan; 300(1):391-400. PubMed ID: 8380968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of superoxide dismutase and catalase during reduction of adrenochrome by DT-diaphorase and NADPH-cytochrome P450 reductase.
    Baez S; Segura-Aguilar J
    Biochem Mol Med; 1995 Oct; 56(1):37-44. PubMed ID: 8593536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Participation of superoxide, hydrogen peroxide and hydroxyl radicals in NADPH-cytochrome P-450 reductase-catalyzed peroxidation of methyl linolenate.
    Kameda K; Ono T; Imai Y
    Biochim Biophys Acta; 1979 Jan; 572(1):77-82. PubMed ID: 32915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic generation of alloxan radicals in rat liver microsomes: possible participation of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P-450 reductase.
    Sakurai K; Haga K; Ogiso T
    Chem Pharm Bull (Tokyo); 1992 Feb; 40(2):432-5. PubMed ID: 1606640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of microsomal production of reactive oxygen intermediates by rifamycin SV: effect of ferric complexes and comparisons between NADPH and NADH.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1992 Nov; 298(2):602-11. PubMed ID: 1329662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterization of hepatic microsomal NADPH cytochrome c reductase from rhesus monkey (Macaca mulatta).
    Ojha V; Kohli KK
    Biochem Mol Biol Int; 1994 Jan; 32(1):55-65. PubMed ID: 8012290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of some acceptors with superoxide anion radicals formed by the NADPH-specific flavoprotein in rat liver microsomal fractions.
    Mishin V; Pokrovsky A; Lyakhovich VV
    Biochem J; 1976 Feb; 154(2):307-10. PubMed ID: 7236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide generated by glutathione reductase initiates a vanadate-dependent free radical chain oxidation of NADH.
    Liochev SI; Fridovich I
    Arch Biochem Biophys; 1992 May; 294(2):403-6. PubMed ID: 1314540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.