These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 8383107)
21. Mitochondrial adaptations in denervated muscle: relationship to muscle performance. Wicks KL; Hood DA Am J Physiol; 1991 Apr; 260(4 Pt 1):C841-50. PubMed ID: 1850197 [TBL] [Abstract][Full Text] [Related]
22. Effect of training on H(2)O(2) release by mitochondria from rat skeletal muscle. Venditti P; Masullo P; Di Meo S Arch Biochem Biophys; 1999 Dec; 372(2):315-20. PubMed ID: 10600170 [TBL] [Abstract][Full Text] [Related]
24. Cytochrome oxidase activity and mitochondrial gene expression in skeletal muscle of patients with chronic obstructive pulmonary disease. Sauleda J; García-Palmer F; Wiesner RJ; Tarraga S; Harting I; Tomás P; Gómez C; Saus C; Palou A; Agustí AG Am J Respir Crit Care Med; 1998 May; 157(5 Pt 1):1413-7. PubMed ID: 9603116 [TBL] [Abstract][Full Text] [Related]
25. Oral Lactate Administration Additively Enhances Endurance Training-Induced Increase in Cytochrome C Oxidase Activity in Mouse Soleus Muscle. Takahashi K; Kitaoka Y; Yamamoto K; Matsunaga Y; Hatta H Nutrients; 2020 Mar; 12(3):. PubMed ID: 32183387 [TBL] [Abstract][Full Text] [Related]
26. Differential expression of nuclear genes for cytochrome c oxidase during myogenesis. Lomax MI; Coucouvanis E; Schon EA; Barald KF Muscle Nerve; 1990 Apr; 13(4):330-7. PubMed ID: 2162485 [TBL] [Abstract][Full Text] [Related]
27. Differential effects of thyroid hormones on energy metabolism of rat slow- and fast-twitch muscles. Bahi L; Garnier A; Fortin D; Serrurier B; Veksler V; Bigard AX; Ventura-Clapier R J Cell Physiol; 2005 Jun; 203(3):589-98. PubMed ID: 15605382 [TBL] [Abstract][Full Text] [Related]
28. Co-ordinate expression of cytochrome c oxidase subunit III and VIc mRNAs in rat tissues. Hood DA Biochem J; 1990 Jul; 269(2):503-6. PubMed ID: 2167071 [TBL] [Abstract][Full Text] [Related]
29. Effect of microgravity on the expression of mitochondrial enzymes in rat cardiac and skeletal muscles. Connor MK; Hood DA J Appl Physiol (1985); 1998 Feb; 84(2):593-8. PubMed ID: 9475870 [TBL] [Abstract][Full Text] [Related]
30. PGC-1alpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle. Leick L; Wojtaszewski JF; Johansen ST; Kiilerich K; Comes G; Hellsten Y; Hidalgo J; Pilegaard H Am J Physiol Endocrinol Metab; 2008 Feb; 294(2):E463-74. PubMed ID: 18073319 [TBL] [Abstract][Full Text] [Related]
31. Xanthine oxidase inhibition attenuates skeletal muscle signaling following acute exercise but does not impair mitochondrial adaptations to endurance training. Wadley GD; Nicolas MA; Hiam DS; McConell GK Am J Physiol Endocrinol Metab; 2013 Apr; 304(8):E853-62. PubMed ID: 23462817 [TBL] [Abstract][Full Text] [Related]
32. Potential role of lipin-1 in exercise-induced mitochondrial biogenesis. Higashida K; Higuchi M; Terada S Biochem Biophys Res Commun; 2008 Sep; 374(3):587-91. PubMed ID: 18656451 [TBL] [Abstract][Full Text] [Related]
33. Daily running for 2 wk and mRNAs for cytochrome c and alpha-actin in rat skeletal muscle. Morrison PR; Biggs RB; Booth FW Am J Physiol; 1989 Nov; 257(5 Pt 1):C936-9. PubMed ID: 2480716 [TBL] [Abstract][Full Text] [Related]
34. Heme-dependent Inactivation of 5-Aminolevulinate Synthase from Caulobacter crescentus. Ikushiro H; Nagami A; Takai T; Sawai T; Shimeno Y; Hori H; Miyahara I; Kamiya N; Yano T Sci Rep; 2018 Sep; 8(1):14228. PubMed ID: 30242198 [TBL] [Abstract][Full Text] [Related]
35. Glucose transporters and maximal transport are increased in endurance-trained rat soleus. Slentz CA; Gulve EA; Rodnick KJ; Henriksen EJ; Youn JH; Holloszy JO J Appl Physiol (1985); 1992 Aug; 73(2):486-92. PubMed ID: 1399970 [TBL] [Abstract][Full Text] [Related]
36. Endurance exercise training enhances local sex steroidogenesis in skeletal muscle. Aizawa K; Iemitsu M; Maeda S; Mesaki N; Ushida T; Akimoto T Med Sci Sports Exerc; 2011 Nov; 43(11):2072-80. PubMed ID: 21502890 [TBL] [Abstract][Full Text] [Related]
37. Calcineurin is not involved in some mitochondrial enzyme adaptations to endurance exercise training in rat skeletal muscle. Terada S; Nakagawa H; Nakamura Y; Muraoka I Eur J Appl Physiol; 2003 Sep; 90(1-2):210-7. PubMed ID: 12856186 [TBL] [Abstract][Full Text] [Related]
38. Differential responses to endurance training in subsarcolemmal and intermyofibrillar mitochondria. Bizeau ME; Willis WT; Hazel JR J Appl Physiol (1985); 1998 Oct; 85(4):1279-84. PubMed ID: 9760317 [TBL] [Abstract][Full Text] [Related]
39. The role of iron supply in the regulation of 5-aminolevulinate synthase mRNA levels in murine erythroleukemia cells. Fuchs O; Ponka P Neoplasma; 1996; 43(1):31-6. PubMed ID: 8843957 [TBL] [Abstract][Full Text] [Related]
40. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. Yeo WK; Paton CD; Garnham AP; Burke LM; Carey AL; Hawley JA J Appl Physiol (1985); 2008 Nov; 105(5):1462-70. PubMed ID: 18772325 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]