BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 8383122)

  • 1. Ubiquitin C-terminal hydrolase activity associated with the 26 S protease complex.
    Eytan E; Armon T; Heller H; Beck S; Hershko A
    J Biol Chem; 1993 Mar; 268(7):4668-74. PubMed ID: 8383122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ubiquitin-aldehyde: a general inhibitor of ubiquitin-recycling processes.
    Hershko A; Rose IA
    Proc Natl Acad Sci U S A; 1987 Apr; 84(7):1829-33. PubMed ID: 3031653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A ubiquitin C-terminal isopeptidase that acts on polyubiquitin chains. Role in protein degradation.
    Hadari T; Warms JV; Rose IA; Hershko A
    J Biol Chem; 1992 Jan; 267(2):719-27. PubMed ID: 1309773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of ubiquitin carboxyl-terminal hydrolase. Borohydride and hydroxylamine inactivate in the presence of ubiquitin.
    Pickart CM; Rose IA
    J Biol Chem; 1986 Aug; 261(22):10210-7. PubMed ID: 3015923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multicomponent system that degrades proteins conjugated to ubiquitin. Resolution of factors and evidence for ATP-dependent complex formation.
    Ganoth D; Leshinsky E; Eytan E; Hershko A
    J Biol Chem; 1988 Sep; 263(25):12412-9. PubMed ID: 2842333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ubiquitinylation and ubiquitin-dependent proteolysis in vertebrate photoreceptors (rod outer segments). Evidence for ubiquitinylation of Gt and rhodopsin.
    Obin MS; Jahngen-Hodge J; Nowell T; Taylor A
    J Biol Chem; 1996 Jun; 271(24):14473-84. PubMed ID: 8662797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increase in ubiquitin-protein conjugates concomitant with the increase in proteolysis in rat skeletal muscle during starvation and atrophy denervation.
    Wing SS; Haas AL; Goldberg AL
    Biochem J; 1995 May; 307 ( Pt 3)(Pt 3):639-45. PubMed ID: 7741691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A soluble ATP-dependent system for protein degradation from murine erythroleukemia cells. Evidence for a protease which requires ATP hydrolysis but not ubiquitin.
    Waxman L; Fagan JM; Tanaka K; Goldberg AL
    J Biol Chem; 1985 Oct; 260(22):11994-2000. PubMed ID: 2995355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and mechanistic studies on the hydrolysis of ubiquitin C-terminal 7-amido-4-methylcoumarin by deubiquitinating enzymes.
    Dang LC; Melandri FD; Stein RL
    Biochemistry; 1998 Feb; 37(7):1868-79. PubMed ID: 9485312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome.
    Lam YA; Xu W; DeMartino GN; Cohen RE
    Nature; 1997 Feb; 385(6618):737-40. PubMed ID: 9034192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP-dependent degradation of ubiquitin-protein conjugates.
    Hershko A; Leshinsky E; Ganoth D; Heller H
    Proc Natl Acad Sci U S A; 1984 Mar; 81(6):1619-23. PubMed ID: 6324208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration that a human 26S proteolytic complex consists of a proteasome and multiple associated protein components and hydrolyzes ATP and ubiquitin-ligated proteins by closely linked mechanisms.
    Kanayama HO; Tamura T; Ugai S; Kagawa S; Tanahashi N; Yoshimura T; Tanaka K; Ichihara A
    Eur J Biochem; 1992 Jun; 206(2):567-78. PubMed ID: 1317798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and characterization of a new ubiquitin C-terminal hydrolase (UCH-1) with isopeptidase activity from chick skeletal muscle.
    Woo SK; Baek SH; Lee JI; Yoo YJ; Cho CM; Kang MS; Chung CH
    J Biochem; 1997 Apr; 121(4):684-9. PubMed ID: 9163518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of nucleotides on assembly of the 26S proteasome and degradation of ubiquitin conjugates.
    Hoffman L; Rechsteiner M
    Mol Biol Rep; 1997 Mar; 24(1-2):13-6. PubMed ID: 9228275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel ATP-requiring protease from skeletal muscle that hydrolyzes non-ubiquitinated proteins.
    Fagan JM; Waxman L
    J Biol Chem; 1989 Oct; 264(30):17868-72. PubMed ID: 2553695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of ubiquitin aldehyde on ubiquitin and ATP-dependent protein degradation.
    Shaeffer JR; Cohen RE
    Biochemistry; 1996 Aug; 35(33):10886-93. PubMed ID: 8718881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 25-kilodalton ubiquitin carrier protein (E2) catalyzes multi-ubiquitin chain synthesis via lysine 48 of ubiquitin.
    Chen Z; Pickart CM
    J Biol Chem; 1990 Dec; 265(35):21835-42. PubMed ID: 2174887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of the 26 S complex that degrades proteins ligated to ubiquitin is accompanied by the formation of ATPase activity.
    Armon T; Ganoth D; Hershko A
    J Biol Chem; 1990 Dec; 265(34):20723-6. PubMed ID: 2174423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonhydrolyzable diubiquitin analogues are inhibitors of ubiquitin conjugation and deconjugation.
    Yin L; Krantz B; Russell NS; Deshpande S; Wilkinson KD
    Biochemistry; 2000 Aug; 39(32):10001-10. PubMed ID: 10933821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotidase activities of the 26 S proteasome and its regulatory complex.
    Hoffman L; Rechsteiner M
    J Biol Chem; 1996 Dec; 271(51):32538-45. PubMed ID: 8955078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.