BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 8383660)

  • 1. Mechanism of light-dependent proton translocation by bacteriorhodopsin.
    Krebs MP; Khorana HG
    J Bacteriol; 1993 Mar; 175(6):1555-60. PubMed ID: 8383660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of genetic replacements of charged and H-bonding residues in the retinal pocket on Ca2+ binding to deionized bacteriorhodopsin.
    Zhang YN; el-Sayed MA; Bonet ML; Lanyi JK; Chang M; Ni B; Needleman R
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1445-9. PubMed ID: 8434004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asp 46 can substitute Asp 96 as the Schiff base proton donor in bacteriorhodopsin.
    Coleman M; Nilsson A; Russell TS; Rath P; Pandey R; Rothschild KJ
    Biochemistry; 1995 Nov; 34(47):15599-606. PubMed ID: 7492563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Threonine-89 participates in the active site of bacteriorhodopsin: evidence for a role in color regulation and Schiff base proton transfer.
    Russell TS; Coleman M; Rath P; Nilsson A; Rothschild KJ
    Biochemistry; 1997 Jun; 36(24):7490-7. PubMed ID: 9200698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local-access model for proton transfer in bacteriorhodopsin.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biochemistry; 1998 Mar; 37(11):3982-93. PubMed ID: 9521720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Halorhodopsin pumps Cl- and bacteriorhodopsin pumps protons by a common mechanism that uses conserved electrostatic interactions.
    Song Y; Gunner MR
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16377-82. PubMed ID: 25362051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of the reisomerization of the retinal, proton uptake, and reprotonation of Asp-96 in the N photointermediate of bacteriorhodopsin.
    Dioumaev AK; Brown LS; Needleman R; Lanyi JK
    Biochemistry; 2001 Sep; 40(38):11308-17. PubMed ID: 11560478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. D38 is an essential part of the proton translocation pathway in bacteriorhodopsin.
    Riesle J; Oesterhelt D; Dencher NA; Heberle J
    Biochemistry; 1996 May; 35(21):6635-43. PubMed ID: 8639612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of mutations of Lys41 and Asp102 of bacteriorhodopsin.
    Zhao Y; Wang Y; Ma D; Wu J; Huang W; Ding J
    Biosci Biotechnol Biochem; 2011; 75(7):1364-70. PubMed ID: 21737924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloride ion binding to bacteriorhodopsin at low pH: an infrared spectroscopic study.
    Kelemen L; Galajda P; Száraz S; Ormos P
    Biophys J; 1999 Apr; 76(4):1951-8. PubMed ID: 10096893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional roles of aspartic acid residues at the cytoplasmic surface of bacteriorhodopsin.
    Brown LS; Needleman R; Lanyi JK
    Biochemistry; 1999 May; 38(21):6855-61. PubMed ID: 10346907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A linkage of the pKa's of asp-85 and glu-204 forms part of the reprotonation switch of bacteriorhodopsin.
    Richter HT; Brown LS; Needleman R; Lanyi JK
    Biochemistry; 1996 Apr; 35(13):4054-62. PubMed ID: 8672439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of individual genetic substitutions of arginine residues on the deprotonation and reprotonation kinetics of the Schiff base during the bacteriorhodopsin photocycle.
    Lin GC; el-Sayed MA; Marti T; Stern LJ; Mogi T; Khorana HG
    Biophys J; 1991 Jul; 60(1):172-8. PubMed ID: 1883936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-independent phospholipid scramblase activity of bacteriorhodopsin from Halobacterium salinarum.
    Verchère A; Ou WL; Ploier B; Morizumi T; Goren MA; Bütikofer P; Ernst OP; Khelashvili G; Menon AK
    Sci Rep; 2017 Aug; 7(1):9522. PubMed ID: 28842688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 A resolution.
    Belrhali H; Nollert P; Royant A; Menzel C; Rosenbusch JP; Landau EM; Pebay-Peyroula E
    Structure; 1999 Aug; 7(8):909-17. PubMed ID: 10467143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The proton transfers in the cytoplasmic domain of bacteriorhodopsin are facilitated by a cluster of interacting residues.
    Brown LS; Yamazaki Y; Maeda A; Sun L; Needleman R; Lanyi JK
    J Mol Biol; 1994 Jun; 239(3):401-14. PubMed ID: 8201621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212.
    Braiman MS; Mogi T; Marti T; Stern LJ; Khorana HG; Rothschild KJ
    Biochemistry; 1988 Nov; 27(23):8516-20. PubMed ID: 2851326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of substitution of proline-77 to aspartate on the light-driven proton release of bacteriorhodopsin.
    Wang Y; Zhao Y; Ming M; Wu J; Huang W; Ding J
    Photochem Photobiol; 2012; 88(4):922-7. PubMed ID: 22443335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.