These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 8383661)

  • 1. Influence of femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus.
    Henze U; Sidow T; Wecke J; Labischinski H; Berger-Bächi B
    J Bacteriol; 1993 Mar; 175(6):1612-20. PubMed ID: 8383661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Staphylococcal peptidoglycan interpeptide bridge biosynthesis: a novel antistaphylococcal target?
    Kopp U; Roos M; Wecke J; Labischinski H
    Microb Drug Resist; 1996; 2(1):29-41. PubMed ID: 9158720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lif, the lysostaphin immunity factor, complements FemB in staphylococcal peptidoglycan interpeptide bridge formation.
    Tschierske M; Ehlert K; Strandén AM; Berger-Bächi B
    FEMS Microbiol Lett; 1997 Aug; 153(2):261-4. PubMed ID: 9271851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. femA, which encodes a factor essential for expression of methicillin resistance, affects glycine content of peptidoglycan in methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains.
    Maidhof H; Reinicke B; Blümel P; Berger-Bächi B; Labischinski H
    J Bacteriol; 1991 Jun; 173(11):3507-13. PubMed ID: 2045371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. epr, which encodes glycylglycine endopeptidase resistance, is homologous to femAB and affects serine content of peptidoglycan cross bridges in Staphylococcus capitis and Staphylococcus aureus.
    Sugai M; Fujiwara T; Ohta K; Komatsuzawa H; Ohara M; Suginaka H
    J Bacteriol; 1997 Jul; 179(13):4311-8. PubMed ID: 9209049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus.
    Strandén AM; Ehlert K; Labischinski H; Berger-Bächi B
    J Bacteriol; 1997 Jan; 179(1):9-16. PubMed ID: 8981974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificities of FemA and FemB for different glycine residues: FemB cannot substitute for FemA in staphylococcal peptidoglycan pentaglycine side chain formation.
    Ehlert K; Schröder W; Labischinski H
    J Bacteriol; 1997 Dec; 179(23):7573-6. PubMed ID: 9393725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Survey of the methicillin resistance-associated genes mecA, mecR1-mecI, and femA-femB in clinical isolates of methicillin-resistant Staphylococcus aureus.
    Hürlimann-Dalel RL; Ryffel C; Kayser FH; Berger-Bächi B
    Antimicrob Agents Chemother; 1992 Dec; 36(12):2617-21. PubMed ID: 1362343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Living with an imperfect cell wall: compensation of femAB inactivation in Staphylococcus aureus.
    Hübscher J; Jansen A; Kotte O; Schäfer J; Majcherczyk PA; Harris LG; Bierbaum G; Heinemann M; Berger-Bächi B
    BMC Genomics; 2007 Sep; 8():307. PubMed ID: 17784943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of three additional femAB-like open reading frames in Staphylococcus aureus.
    Tschierske M; Mori C; Rohrer S; Ehlert K; Shaw KJ; Berger-Bächi B
    FEMS Microbiol Lett; 1999 Feb; 171(2):97-102. PubMed ID: 10077832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FemA, a host-mediated factor essential for methicillin resistance in Staphylococcus aureus: molecular cloning and characterization.
    Berger-Bächi B; Barberis-Maino L; Strässle A; Kayser FH
    Mol Gen Genet; 1989 Oct; 219(1-2):263-9. PubMed ID: 2559314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping and characterization of multiple chromosomal factors involved in methicillin resistance in Staphylococcus aureus.
    Berger-Bächi B; Strässle A; Gustafson JE; Kayser FH
    Antimicrob Agents Chemother; 1992 Jul; 36(7):1367-73. PubMed ID: 1510429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The essential Staphylococcus aureus gene fmhB is involved in the first step of peptidoglycan pentaglycine interpeptide formation.
    Rohrer S; Ehlert K; Tschierske M; Labischinski H; Berger-Bächi B
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):9351-6. PubMed ID: 10430946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FmhA and FmhC of
    Willing S; Dyer E; Schneewind O; Missiakas D
    J Biol Chem; 2020 Sep; 295(39):13664-13676. PubMed ID: 32759309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pentaglycine bridges of Staphylococcus aureus peptidoglycan are essential for cell integrity.
    Monteiro JM; Covas G; Rausch D; Filipe SR; Schneider T; Sahl HG; Pinho MG
    Sci Rep; 2019 Mar; 9(1):5010. PubMed ID: 30899062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin.
    De Lencastre H; Wu SW; Pinho MG; Ludovice AM; Filipe S; Gardete S; Sobral R; Gill S; Chung M; Tomasz A
    Microb Drug Resist; 1999; 5(3):163-75. PubMed ID: 10566865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered muropeptide composition in Staphylococcus aureus strains with an inactivated femA locus.
    de Jonge BL; Sidow T; Chang YS; Labischinski H; Berger-Bachi B; Gage DA; Tomasz A
    J Bacteriol; 1993 May; 175(9):2779-82. PubMed ID: 8478340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus.
    Schneider T; Senn MM; Berger-Bächi B; Tossi A; Sahl HG; Wiedemann I
    Mol Microbiol; 2004 Jul; 53(2):675-85. PubMed ID: 15228543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-level (beta)-lactam resistance and cell wall synthesis catalyzed by the mecA homologue of Staphylococcus sciuri introduced into Staphylococcus aureus.
    Severin A; Wu SW; Tabei K; Tomasz A
    J Bacteriol; 2005 Oct; 187(19):6651-8. PubMed ID: 16166526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nonantibiotic small molecule cyslabdan enhances the potency of β-lactams against MRSA by inhibiting pentaglycine interpeptide bridge synthesis.
    Koyama N; Tokura Y; Münch D; Sahl HG; Schneider T; Shibagaki Y; Ikeda H; Tomoda H
    PLoS One; 2012; 7(11):e48981. PubMed ID: 23166602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.