These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 8383680)

  • 21. Regulation of organelle movement in melanophores by protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2A (PP2A).
    Reilein AR; Tint IS; Peunova NI; Enikolopov GN; Gelfand VI
    J Cell Biol; 1998 Aug; 142(3):803-13. PubMed ID: 9700167
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloning and characterization of an endothelin-3 specific receptor (ETC receptor) from Xenopus laevis dermal melanophores.
    Karne S; Jayawickreme CK; Lerner MR
    J Biol Chem; 1993 Sep; 268(25):19126-33. PubMed ID: 8360195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bidirectional pigment granule movements of melanophores are regulated by protein phosphorylation and dephosphorylation.
    Rozdzial MM; Haimo LT
    Cell; 1986 Dec; 47(6):1061-70. PubMed ID: 3022941
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 5-HT receptor subtypes as key targets in mediating pigment dispersion within melanophores of teleost, Oreochromis mossambicus.
    Salim S; Ali AS; Ali SA
    Comp Biochem Physiol B Biochem Mol Biol; 2013 Feb; 164(2):117-23. PubMed ID: 23195131
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of organelle transport in melanophores: regulation of Ca2+ and cAMP levels.
    Thaler CD; Haimo LT
    Cell Motil Cytoskeleton; 1992; 22(3):175-84. PubMed ID: 1330333
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MCH-induced pigment aggregation in teleost melanophores is associated with a cAMP reduction.
    Svensson SP; Norberg T; Andersson RG; Grundström N; Karlsson JO
    Life Sci; 1991; 48(21):2043-6. PubMed ID: 1851917
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Receptor mechanisms in fish chromatophores--VI. Adenosine receptors mediate pigment dispersion in guppy and catfish melanophores.
    Miyashita Y; Kumazawa T; Fujii R
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 77(2):205-10. PubMed ID: 6144418
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of phospholipase Cbeta3 phosphorylation in the desensitization of cellular responses to platelet-activating factor.
    Ali H; Fisher I; Haribabu B; Richardson RM; Snyderman R
    J Biol Chem; 1997 May; 272(18):11706-9. PubMed ID: 9115222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Desensitization of pigment granule aggregation in Xenopus leavis melanophores: melatonin degradation rather than receptor down-regulation is responsible.
    Teh MT; Sugden D
    J Neurochem; 2002 May; 81(4):719-27. PubMed ID: 12065631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for several roles of dynein in pigment transport in melanophores.
    Nilsson H; Wallin M
    Cell Motil Cytoskeleton; 1997; 38(4):397-409. PubMed ID: 9415381
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The gastrin-releasing peptide receptor is differentially coupled to adenylate cyclase and phospholipase C in different tissues.
    Garcia LJ; Pradhan TK; Weber HC; Moody TW; Jensen RT
    Biochim Biophys Acta; 1997 May; 1356(3):343-54. PubMed ID: 9194577
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ethanol causes desensitization of receptor-mediated phospholipase C activation in isolated hepatocytes.
    Higashi K; Hoek JB
    J Biol Chem; 1991 Feb; 266(4):2178-90. PubMed ID: 1846616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calcium requirement for alpha-MSH action on melanophores: studies with forskolin.
    de Graan PN; van de Kamp AJ; Hup DR; Gispen WH; van de Veerdonk FC
    J Recept Res; 1984; 4(1-6):521-36. PubMed ID: 6098671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Circadian rhythm of pigment migration induced by chromatrophorotropins in melanophores of the crab Chasmagnathus granulata.
    Granato FC; Tironi TS; Maciel FE; Rosa CE; Vargas MA; Nery LE
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Jul; 138(3):313-9. PubMed ID: 15313485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bombesin and phorbol ester stimulate phosphatidylcholine hydrolysis by phospholipase C: evidence for a role of protein kinase C.
    Muir JG; Murray AW
    J Cell Physiol; 1987 Mar; 130(3):382-91. PubMed ID: 3558493
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of structural requirements of alpha-MSH and ACTH for inducing excessive grooming and pigment dispersion.
    Spruijt BM; De Graan PN; Eberle AN; Gispen WH
    Peptides; 1985; 6(6):1185-9. PubMed ID: 3010259
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Action of light on frog pigment cells in culture.
    Daniolos A; Lerner AB; Lerner MR
    Pigment Cell Res; 1990; 3(1):38-43. PubMed ID: 2165596
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aggregation of pigment granules in single cultured Xenopus laevis melanophores by melatonin analogues.
    Sugden D
    Br J Pharmacol; 1991 Dec; 104(4):922-7. PubMed ID: 1667293
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of substitution of threonine 654 of the epidermal growth factor receptor on epidermal growth factor-mediated activation of phospholipase C.
    Decker SJ; Ellis C; Pawson T; Velu T
    J Biol Chem; 1990 Apr; 265(12):7009-15. PubMed ID: 2108964
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analogues of diverse structure are unable to differentiate native melatonin receptors in the chicken retina, sheep pars tuberalis and Xenopus melanophores.
    Pickering H; Sword S; Vonhoff S; Jones R; Sugden D
    Br J Pharmacol; 1996 Sep; 119(2):379-87. PubMed ID: 8886424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.