These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 8383680)

  • 41. An increase in extracellular Ca(2+) concentration induces pigment aggregation in teleostean melanophores.
    Yamada T; Fujii R
    Zoolog Sci; 2002 Aug; 19(8):829-39. PubMed ID: 12193799
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Internalization of the gastrin-releasing peptide receptor is mediated by both phospholipase C-dependent and -independent processes.
    Benya RV; Akeson M; Mrozinski J; Jensen RT; Battey JF
    Mol Pharmacol; 1994 Sep; 46(3):495-501. PubMed ID: 7935330
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional expression and characterization of human D2 and D3 dopamine receptors.
    Potenza MN; Graminski GF; Schmauss C; Lerner MR
    J Neurosci; 1994 Mar; 14(3 Pt 2):1463-76. PubMed ID: 7907363
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phosphoinositide 3-kinase is involved in Xenopus and Labrus melanophore aggregation.
    Andersson TP; Sköld HN; Svensson SP
    Cell Signal; 2003 Dec; 15(12):1119-27. PubMed ID: 14575867
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Olfaction by melanophores: what does it mean?
    Lerner MR; Reagan J; Gyorgyi T; Roby A
    Proc Natl Acad Sci U S A; 1988 Jan; 85(1):261-4. PubMed ID: 2829173
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Melatonin agonists induce phosphoinositide hydrolysis in Xenopus laevis melanophores.
    Mullins UL; Fernandes PB; Eison AS
    Cell Signal; 1997 Feb; 9(2):169-73. PubMed ID: 9113416
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Melanopsins: Localization and Phototransduction in Xenopus laevis Melanophores.
    Moraes MN; Ramos BC; Poletini MO; Castrucci AM
    Photochem Photobiol; 2015; 91(5):1133-41. PubMed ID: 26108966
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of novel hexapeptide agonists at the Xenopus laevis melanophore melanocortin receptor.
    Iuga AO; Reddy VB; Lerner EA
    Peptides; 2005 Nov; 26(11):2124-8. PubMed ID: 16269347
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nitric oxide modulates intracellular translocation of pigment organelles in Xenopus laevis melanophores.
    Nilsson HM; Karlsson AM; Loitto VM; Svensson SP; Sundqvist T
    Cell Motil Cytoskeleton; 2000 Nov; 47(3):209-18. PubMed ID: 11056522
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Further evidence for a phospholipase C-coupled G protein in hamster fibroblasts. Induction of inositol phosphate formation by fluoroaluminate and vanadate and inhibition by pertussis toxin.
    Paris S; Pouysségur J
    J Biol Chem; 1987 Feb; 262(5):1970-6. PubMed ID: 3029056
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative analyses of the pigment-aggregating and -dispersing actions of MCH on fish chromatophores.
    Oshima N; Nakamaru N; Araki S; Sugimoto M
    Comp Biochem Physiol C Toxicol Pharmacol; 2001 Jun; 129(2):75-84. PubMed ID: 11423380
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The biphasic stimulation of insulin secretion by bombesin involves both cytosolic free calcium and protein kinase C.
    Swope SL; Schonbrunn A
    Biochem J; 1988 Jul; 253(1):193-202. PubMed ID: 2844165
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Heterotrimeric kinesin II is the microtubule motor protein responsible for pigment dispersion in Xenopus melanophores.
    Tuma MC; Zill A; Le Bot N; Vernos I; Gelfand V
    J Cell Biol; 1998 Dec; 143(6):1547-58. PubMed ID: 9852150
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Some sweet and bitter tastants stimulate inhibitory pathway of adenylyl cyclase via melatonin and alpha 2-adrenergic receptors in Xenopus laevis melanophores.
    Zubare-Samuelov M; Peri I; Tal M; Tarshish M; Spielman AI; Naim M
    Am J Physiol Cell Physiol; 2003 Nov; 285(5):C1255-62. PubMed ID: 12839835
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanisms underlying endothelin's inhibition of FSH-stimulated progesterone production by ovarian granulosa cells.
    Flores JA; Garmey JC; Lahav M; Veldhuis JD
    Mol Cell Endocrinol; 1999 Oct; 156(1-2):169-78. PubMed ID: 10612435
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Flavor Enhancer Maltol Increases Pigment Aggregation in Dermal and Neural Melanophores in Xenopus laevis Tadpoles.
    Dahora LI; Fitzgerald A; Emanuel M; Baiges AF; Husain Z; Thompson CK
    Environ Toxicol Chem; 2020 Feb; 39(2):381-395. PubMed ID: 31721268
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modulation by cortisol of luteinizing hormone secretion from cultured porcine anterior pituitary cells: effects on secretion induced by phospholipase C, phorbol ester and cAMP.
    Li PS
    Naunyn Schmiedebergs Arch Pharmacol; 1994 Jan; 349(1):107-12. PubMed ID: 8139698
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intracellular calcium and cAMP regulate directional pigment movements in teleost erythrophores.
    Kotz KJ; McNiven MA
    J Cell Biol; 1994 Feb; 124(4):463-74. PubMed ID: 8106546
    [TBL] [Abstract][Full Text] [Related]  

  • 59. L-NAME-induced dispersion of melanosomes in melanophores activates PKC, MEK and ERK1.
    Nilsson HM; Svensson SP; Sundqvist T
    Pigment Cell Res; 2001 Dec; 14(6):450-5. PubMed ID: 11775057
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inhibition of CD3-linked phospholipase C by phorbol ester and by cAMP is associated with decreased phosphotyrosine and increased phosphoserine contents of PLC-gamma 1.
    Park DJ; Min HK; Rhee SG
    J Biol Chem; 1992 Jan; 267(3):1496-501. PubMed ID: 1370476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.