These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 8383781)

  • 21. Differential effects of polyamine on the cytosolic and mitochondrial NADP-isocitrate dehydrogenases.
    Murakami K; Haneda M; Iwata S; Yoshino M
    Biofactors; 2012; 38(5):365-71. PubMed ID: 22674798
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional characterization of NADP-dependent isocitrate dehydrogenase isozymes from Trypanosoma cruzi.
    Leroux AE; Maugeri DA; Cazzulo JJ; Nowicki C
    Mol Biochem Parasitol; 2011 May; 177(1):61-4. PubMed ID: 21291916
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of compartmental localization on the function of yeast NADP+-specific isocitrate dehydrogenases.
    Contreras-Shannon V; McAlister-Henn L
    Arch Biochem Biophys; 2004 Mar; 423(2):235-46. PubMed ID: 15001388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial isocitrate dehydrogenases from yeast.
    Bernofsky C; Utter MF
    J Biol Chem; 1966 Nov; 241(22):5461-6. PubMed ID: 4380945
    [No Abstract]   [Full Text] [Related]  

  • 25. A study of the control of NADP(+)-dependent isocitrate dehydrogenase activity during gonadotropin-induced development of the rat ovary.
    Jennings GT; Stevenson PM
    Eur J Biochem; 1991 Jun; 198(3):621-5. PubMed ID: 2050143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Possible functions of the NADP-linked isocitrate dehydrogenase and H(+)-transhydrogenase in heart mitochondria.
    Sazanov LA; Jackson JB
    Biochem Soc Trans; 1993 Aug; 21 ( Pt 3)(3):260S. PubMed ID: 8224412
    [No Abstract]   [Full Text] [Related]  

  • 27. Enzymatic characterization and functional implication of two structurally different isocitrate dehydrogenases from Xylella fastidiosa.
    Lv P; Tang W; Wang P; Cao Z; Zhu G
    Biotechnol Appl Biochem; 2018 Mar; 65(2):230-237. PubMed ID: 28220528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondrial and cytosolic NADPH systems and isocitrate dehydrogenase indicator metabolites during ureogensis from ammonia in isolated rat hepatocytes.
    Sies H; Akerboom TP; Tager JM
    Eur J Biochem; 1977 Jan; 72(2):301-7. PubMed ID: 13998
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structures of NAD
    Tang W; Wu M; Qin N; Liu L; Meng R; Wang C; Wang P; Zang J; Zhu G
    Arch Biochem Biophys; 2021 Sep; 708():108898. PubMed ID: 33957092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activities of NAD-specific and NADP-specific isocitrate dehydrogenases in rat-liver mitochondria. Studies with D-threo-alpha-methylisocitrate.
    Smith CM; Plaut GW
    Eur J Biochem; 1979 Jun; 97(1):283-95. PubMed ID: 38961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Subcellular distribution of isocitrate dehydrogenases in neonatal and adult mouse brain.
    Loverde AW; Lehrer GM
    J Neurochem; 1973 Feb; 20(2):441-8. PubMed ID: 4144594
    [No Abstract]   [Full Text] [Related]  

  • 32. Use of a bisubstrate inhibitor to distinguish between isocitrate dehydrogenase isozymes.
    Ehrlich RS
    J Enzyme Inhib; 2000; 15(3):265-72. PubMed ID: 10811031
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analogy and homology of dehydrogenases of the Oomycetes. 3. Isoenzyme patterns of malic and isocitric dehydrogenases.
    Wang HS; LéJohn HB
    Can J Microbiol; 1974 Apr; 20(4):581-6. PubMed ID: 4151348
    [No Abstract]   [Full Text] [Related]  

  • 34. beta-Sulfur substituted alpha-ketoglutarates as inhibitors and alternate substrates for isocitrate dehydrogenases and certain other enzymes.
    Plaut GW; Aogaichi T; Gabriel JL
    Arch Biochem Biophys; 1986 Feb; 245(1):114-24. PubMed ID: 3947094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selectivity in the binding of NAD(P)+ analogues to NAD- and NADP-dependent pig heart isocitrate dehydrogenases. A nuclear magnetic resonance study.
    Ehrlich RS; Colman RF
    Biochemistry; 1992 Dec; 31(49):12524-31. PubMed ID: 1463739
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of NAD- and NADP-dependent isocitrate dehydrogenases by reduction levels of pyridine nucleotides in mitochondria and cytosol of pea leaves.
    Igamberdiev AU; Gardeström P
    Biochim Biophys Acta; 2003 Sep; 1606(1-3):117-25. PubMed ID: 14507432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution and Functional Analysis of Isocitrate Dehydrogenases across Kinetoplastids.
    Chmelová Ľ; Záhonová K; Albanaz ATS; Hrebenyk L; Horváth A; Yurchenko V; Škodová-Sveráková I
    Genome Biol Evol; 2024 Mar; 16(3):. PubMed ID: 38447055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Ca2+ on the activity of mitochondrial NADP-specific isocitrate dehydrogenase from rabbit adrenals.
    Strumiło E
    Acta Biochim Pol; 1995; 42(3):325-8. PubMed ID: 8588483
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Purification and characterization of a monomeric isocitrate dehydrogenase with dual coenzyme specificity from the photosynthetic bacterium Rhodomicrobium vannielii.
    Leyland ML; Kelly DJ
    Eur J Biochem; 1991 Nov; 202(1):85-93. PubMed ID: 1935983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modification of NAD-dependent isocitrate dehydrogenase by the 2',3'-dialdehyde derivatives of NAD, NADH, NADP, and NADPH.
    Saha A; Colman RF
    Arch Biochem Biophys; 1988 Aug; 264(2):665-77. PubMed ID: 3401017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.