These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 8384002)
1. Regulation of System A amino-acid transport activity by phospholipase C and cAMP-inducing agents in skeletal muscle: modulation of insulin action. Gumà A; Viñals F; Testar X; Palacín M; Zorzano A Biochim Biophys Acta; 1993 Mar; 1176(1-2):155-61. PubMed ID: 8384002 [TBL] [Abstract][Full Text] [Related]
2. Protein kinase C activators selectively inhibit insulin-stimulated system A transport activity in skeletal muscle at a post-receptor level. Gumà A; Camps M; Palacín M; Testar X; Zorzano A Biochem J; 1990 Jun; 268(3):633-9. PubMed ID: 2194449 [TBL] [Abstract][Full Text] [Related]
3. Activation of glucose transport in skeletal muscle by phospholipase C and phorbol ester. Evaluation of the regulatory roles of protein kinase C and calcium. Henriksen EJ; Rodnick KJ; Holloszy JO J Biol Chem; 1989 Dec; 264(36):21536-43. PubMed ID: 2600081 [TBL] [Abstract][Full Text] [Related]
4. Differential sensitivity of insulin- and adaptive-regulation-induced system A activation to microtubular function in skeletal muscle. Gumà A; Castelló A; Testar X; Palacín M; Zorzano A Biochem J; 1992 Jan; 281 ( Pt 2)(Pt 2):407-11. PubMed ID: 1736891 [TBL] [Abstract][Full Text] [Related]
5. C-peptide stimulates glucose transport in isolated human skeletal muscle independent of insulin receptor and tyrosine kinase activation. Zierath JR; Handberg A; Tally M; Wallberg-Henriksson H Diabetologia; 1996 Mar; 39(3):306-13. PubMed ID: 8721776 [TBL] [Abstract][Full Text] [Related]
6. Vanadate stimulates system A amino acid transport activity in skeletal muscle. Evidence for the involvement of intracellular pH as a mediator of vanadate action. Muñoz P; Gumà A; Camps M; Furriols M; Testar X; Palacín M; Zorzano A J Biol Chem; 1992 May; 267(15):10381-8. PubMed ID: 1375219 [TBL] [Abstract][Full Text] [Related]
7. Insulin regulation of sugar transport in giant muscle fibres of the barnacle. Baker PF; Carruthers A J Physiol; 1983 Mar; 336():397-431. PubMed ID: 6308227 [TBL] [Abstract][Full Text] [Related]
8. Lithium increases susceptibility of muscle glucose transport to stimulation by various agents. Tabata I; Schluter J; Gulve EA; Holloszy JO Diabetes; 1994 Jul; 43(7):903-7. PubMed ID: 8013755 [TBL] [Abstract][Full Text] [Related]
9. Phorbol esters imitate in rat fat-cells the full effect of insulin on glucose-carrier translocation, but not on 3-O-methylglucose-transport activity. Mühlbacher C; Karnieli E; Schaff P; Obermaier B; Mushack J; Rattenhuber E; Häring HU Biochem J; 1988 Feb; 249(3):865-70. PubMed ID: 3281656 [TBL] [Abstract][Full Text] [Related]
10. The phorbol ester TPA potentiates cholera toxin- and isoproterenol-stimulated cyclic AMP-synthesis in primary astrocyte cultures. Gebicke-Haerter PJ; Seregi A; Schobert A; Hertting G Neurochem Int; 1994 Jan; 24(1):1-12. PubMed ID: 7907511 [TBL] [Abstract][Full Text] [Related]
11. Effects of phenylarsine oxide on stimulation of glucose transport in rat skeletal muscle. Henriksen EJ; Holloszy JO Am J Physiol; 1990 Apr; 258(4 Pt 1):C648-53. PubMed ID: 2185640 [TBL] [Abstract][Full Text] [Related]
12. The stimulating effect of 3',5'-(cyclic)adenosine monophosphate and lipolytic hormones on 3-O-methylglucose transport and 45Ca2+ release in adipocytes and skeletal muscle of the rat. Rasmussen MJ; Clausen T Biochim Biophys Acta; 1982 Dec; 693(2):389-97. PubMed ID: 6297557 [TBL] [Abstract][Full Text] [Related]
13. G-protein-mediated regulation of the insulin-responsive glucose transporter in isolated cardiac myocytes. Eckel J; Gerlach-Eskuchen E; Reinauer H Biochem J; 1990 Dec; 272(3):691-6. PubMed ID: 2176473 [TBL] [Abstract][Full Text] [Related]
14. Plasma free fatty acids decrease insulin-stimulated skeletal muscle glucose uptake by suppressing glycolysis in conscious rats. Kim JK; Wi JK; Youn JH Diabetes; 1996 Apr; 45(4):446-53. PubMed ID: 8603766 [TBL] [Abstract][Full Text] [Related]
15. Regulation of insulin-stimulated glucose transport in the isolated rat adipocyte. cAMP-independent effects of lipolytic and antilipolytic agents. Kuroda M; Honnor RC; Cushman SW; Londos C; Simpson IA J Biol Chem; 1987 Jan; 262(1):245-53. PubMed ID: 3025204 [TBL] [Abstract][Full Text] [Related]
16. Interactions of insulin, catecholamines and adenosine in the regulation of glucose transport in isolated rat cardiac myocytes. Shanahan MF; Edwards BM; Ruoho AE Biochim Biophys Acta; 1986 Jun; 887(1):121-9. PubMed ID: 3518811 [TBL] [Abstract][Full Text] [Related]
17. Regulation of glucose carrier activity by AlCl3 and phospholipase C in fat-cells. Obermaier-Kusser B; Mühlbacher C; Mushack J; Rattenhuber E; Fehlmann M; Haring HU Biochem J; 1988 Dec; 256(2):515-20. PubMed ID: 3066348 [TBL] [Abstract][Full Text] [Related]
18. The interaction between the adenylate cyclase system and insulin-stimulated glucose transport. Evidence for the importance of both cyclic-AMP-dependent and -independent mechanisms. Lönnroth P; Davies JI; Lönnroth I; Smith U Biochem J; 1987 May; 243(3):789-95. PubMed ID: 2821992 [TBL] [Abstract][Full Text] [Related]
19. Interactions between effects of W-7, insulin, and hypoxia on glucose transport in skeletal muscle. Youn JH; Gulve EA; Henriksen EJ; Holloszy JO Am J Physiol; 1994 Oct; 267(4 Pt 2):R888-94. PubMed ID: 7943429 [TBL] [Abstract][Full Text] [Related]
20. Effects of insulin and phospholipase C in control and denervated rat skeletal muscle. Sowell MO; Boggs KP; Robinson KA; Dutton SL; Buse MG Am J Physiol; 1991 Feb; 260(2 Pt 1):E247-56. PubMed ID: 1847587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]