BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 8384221)

  • 1. Histochemical localization of synaptic zinc in the developing cat visual cortex.
    Dyck R; Beaulieu C; Cynader M
    J Comp Neurol; 1993 Mar; 329(1):53-67. PubMed ID: 8384221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential regulation of substance P and somatostatin in Martinotti cells of the developing cat visual cortex.
    Wahle P
    J Comp Neurol; 1993 Mar; 329(4):519-38. PubMed ID: 7681071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postnatal development and localization of an N-acetylgalactosamine containing glycoconjugate associated with nonpyramidal neurons in cat visual cortex.
    Schweizer M; Streit WJ; Müller CM
    J Comp Neurol; 1993 Mar; 329(3):313-27. PubMed ID: 7681454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc-rich transient vertical modules in the rat retrosplenial cortex during postnatal development.
    Miró-Bernié N; Ichinohe N; Pérez-Clausell J; Rockland KS
    Neuroscience; 2006; 138(2):523-35. PubMed ID: 16426767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ocular dominance plasticity and developmental changes of 5'-nucleotidase distributions in the kitten visual cortex.
    Schoen SW; Leutenecker B; Kreutzberg GW; Singer W
    J Comp Neurol; 1990 Jun; 296(3):379-92. PubMed ID: 2358543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of transitory corpus callosum axons projecting to developing cat visual cortex revealed by DiI.
    Elberger AJ
    J Comp Neurol; 1993 Jul; 333(3):326-42. PubMed ID: 8349847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of axoplasmic transport in the developing visual system of the rat: IV. Quantitative Golgi, electron microscopic, and histochemical analyses of the maturation of the visual cortex.
    Matthews MA; Riccio RV
    Am J Anat; 1984 Sep; 171(1):107-31. PubMed ID: 6207722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An electron microscope study of the early postnatal development of the visual cortex of the hooded rat.
    Juraska JM; Fifkova E
    J Comp Neurol; 1979 Jan; 183(2):257-67. PubMed ID: 762258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laminar and cellular localization of cytochrome oxidase in the cat striate cortex.
    Kageyama GH; Wong-Riley M
    J Comp Neurol; 1986 Mar; 245(2):137-59. PubMed ID: 2420840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional differences in the ontogeny of the serotonergic projection to the cerebral cortex.
    Dori I; Dinopoulos A; Blue ME; Parnavelas JG
    Exp Neurol; 1996 Mar; 138(1):1-14. PubMed ID: 8593886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-uniform distribution of the NMDAR1 receptor subunit in kitten visual cortex at the peak of the critical period.
    Murphy KM; Trepel C; Pegado VD
    Mol Vis; 1996 Aug; 2():9. PubMed ID: 9238086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Electron microscopic analysis of expression of NMDA-R1 in the developmental process of visual cortex in strabismic amblyopic cat].
    Yin Z; Yu T; Chen L
    Zhonghua Yan Ke Za Zhi; 2002 Aug; 38(8):472-5. PubMed ID: 12410985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptophysin immunohistochemistry reveals inside-out pattern of early synaptogenesis in ferret cerebral cortex.
    Voigt T; De Lima AD; Beckmann M
    J Comp Neurol; 1993 Apr; 330(1):48-64. PubMed ID: 8468403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential development of the dual serotoninergic fiber system in the cerebral cortex of the cat.
    Vu DH; Törk I
    J Comp Neurol; 1992 Mar; 317(2):156-74. PubMed ID: 1573061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tangential organization of callosal connectivity in the cat's visual cortex.
    Boyd J; Matsubara J
    J Comp Neurol; 1994 Sep; 347(2):197-210. PubMed ID: 7814664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Connections between cat brain visual cortex fields 18 and 19 passing through the white matter].
    Iontov AS; Granstrem EE
    Arkh Anat Gistol Embriol; 1980 Mar; 78(3):27-33. PubMed ID: 7396732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of synaptic zinc in the developing mouse somatosensory barrel cortex.
    Czupryn A; Skangiel-Kramska J
    J Comp Neurol; 1997 Oct; 386(4):652-60. PubMed ID: 9378858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of corticotectal synaptic terminals in the cat: a quantitative electron microscopic analysis.
    Plummer KL; Behan M
    J Comp Neurol; 1993 Dec; 338(3):458-74. PubMed ID: 8113449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative light and electron microscopic analysis of cytochrome oxidase-rich zones in V II prestriate cortex of the squirrel monkey.
    Wong-Riley MT; Carroll EW
    J Comp Neurol; 1984 Jan; 222(1):18-37. PubMed ID: 6321563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient synaptic zinc-positive thalamocortical terminals in the developing barrel cortex.
    Ichinohe N; Potapov D; Rockland KS
    Eur J Neurosci; 2006 Aug; 24(4):1001-10. PubMed ID: 16930427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.