These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 8384374)

  • 1. Electronic structure contributions to function in bioinorganic chemistry.
    Solomon EI; Lowery MD
    Science; 1993 Mar; 259(5101):1575-81. PubMed ID: 8384374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic methods in bioinorganic chemistry: blue to green to red copper sites.
    Solomon EI
    Inorg Chem; 2006 Oct; 45(20):8012-25. PubMed ID: 16999398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the electronic structure of the blue copper site in plastocyanin by NMR relaxation.
    Hansen DF; Led JJ
    J Am Chem Soc; 2004 Feb; 126(4):1247-52. PubMed ID: 14746497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy saving electron pathways in proteins.
    Larsson S
    J Biol Inorg Chem; 2000 Oct; 5(5):560-4. PubMed ID: 11085646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper proteins and copper enzymes.
    Cass AE; Hill HA
    Ciba Found Symp; 1980; 79():71-91. PubMed ID: 6907091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loop-contraction mutagenesis of type 1 copper sites.
    Yanagisawa S; Dennison C
    J Am Chem Soc; 2004 Dec; 126(48):15711-9. PubMed ID: 15571393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinorganic chemistry: Zeroing in on a new copper site.
    Rosenzweig AC
    Nat Chem; 2009 Dec; 1(9):684-5. PubMed ID: 21124349
    [No Abstract]   [Full Text] [Related]  

  • 8. Metalloenzymes, structural motifs, and inorganic models.
    Karlin KD
    Science; 1993 Aug; 261(5122):701-8. PubMed ID: 7688141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ENDOR of metalloenzymes.
    Hoffman BM
    Acc Chem Res; 2003 Jul; 36(7):522-9. PubMed ID: 12859213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mimicking biological electron transfer and oxygen activation involving iron and copper proteins: a bio(in)organic supramolecular approach.
    Feiters MC
    Met Ions Biol Syst; 2001; 38():461-655. PubMed ID: 11219019
    [No Abstract]   [Full Text] [Related]  

  • 11. Density functional study of EPR parameters and spin-density distribution of azurin and other blue copper proteins.
    Remenyi C; Reviakine R; Kaupp M
    J Phys Chem B; 2007 Jul; 111(28):8290-304. PubMed ID: 17592871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic and density functional studies of the red copper site in nitrosocyanin: role of the protein in determining active site geometric and electronic structure.
    Basumallick L; Sarangi R; DeBeer George S; Elmore B; Hooper AB; Hedman B; Hodgson KO; Solomon EI
    J Am Chem Soc; 2005 Mar; 127(10):3531-44. PubMed ID: 15755175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoinduced electron-transfer reaction in a ternary system involving zinc cytochrome c and plastocyanin. Interplay of monopolar and dipolar electrostatic interactions between metalloproteins.
    Zhou JS; Kostić NM
    Biochemistry; 1992 Aug; 31(33):7543-50. PubMed ID: 1324717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metalloenzymes.
    Malmström BG
    UCLA Forum Med Sci; 1979; (21):87-96. PubMed ID: 233496
    [No Abstract]   [Full Text] [Related]  

  • 15. Preferred sites and pathways for electron transfer in blue copper proteins.
    Farver O; Pecht I
    Prog Clin Biol Res; 1988; 274():269-83. PubMed ID: 3406028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent developments with copper proteins.
    Lontie RA; Groeseneken DR
    Top Curr Chem; 1983; 108():1-33. PubMed ID: 6298971
    [No Abstract]   [Full Text] [Related]  

  • 17. Active site structures and the redox properties of blue copper proteins: atomic resolution structure of azurin II and electronic structure calculations of azurin, plastocyanin and stellacyanin.
    Paraskevopoulos K; Sundararajan M; Surendran R; Hough MA; Eady RR; Hillier IH; Hasnain SS
    Dalton Trans; 2006 Jul; (25):3067-76. PubMed ID: 16786065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of dioxygen by copper metalloproteins and insights from model complexes.
    Quist DA; Diaz DE; Liu JJ; Karlin KD
    J Biol Inorg Chem; 2017 Apr; 22(2-3):253-288. PubMed ID: 27921179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial metalloenzymes derived from three-helix bundles.
    Tebo AG; Pecoraro VL
    Curr Opin Chem Biol; 2015 Apr; 25():65-70. PubMed ID: 25579452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational De Novo Design of a Cu Metalloenzyme for Superoxide Dismutation.
    Mathieu E; Tolbert AE; Koebke KJ; Tard C; Iranzo O; Penner-Hahn JE; Policar C; Pecoraro V
    Chemistry; 2020 Jan; 26(1):249-258. PubMed ID: 31710732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.