These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 8384374)

  • 21. Emergence of metal selectivity and promiscuity in metalloenzymes.
    Eom H; Song WJ
    J Biol Inorg Chem; 2019 Jun; 24(4):517-531. PubMed ID: 31115763
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the role of strain in blue copper proteins.
    Ryde U; Olsson MH; Roos BO; De Kerpel JO; Pierloot K
    J Biol Inorg Chem; 2000 Oct; 5(5):565-74. PubMed ID: 11085647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters.
    Lin YW
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31362341
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hemocyanins and invertebrate evolution.
    van Holde KE; Miller KI; Decker H
    J Biol Chem; 2001 May; 276(19):15563-6. PubMed ID: 11279230
    [No Abstract]   [Full Text] [Related]  

  • 25. Partial conversion of Hansenula polymorpha amine oxidase into a "plant" amine oxidase: implications for copper chemistry and mechanism.
    Welford RW; Lam A; Mirica LM; Klinman JP
    Biochemistry; 2007 Sep; 46(38):10817-27. PubMed ID: 17760423
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A missing link in cupredoxins: crystal structure of cucumber stellacyanin at 1.6 A resolution.
    Hart PJ; Nersissian AM; Herrmann RG; Nalbandyan RM; Valentine JS; Eisenberg D
    Protein Sci; 1996 Nov; 5(11):2175-83. PubMed ID: 8931136
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How the local geometry of the Cu-binding site determines the thermal stability of blue copper proteins.
    Chaboy J; Díaz-Moreno S; Díaz-Moreno I; De la Rosa MA; Díaz-Quintana A
    Chem Biol; 2011 Jan; 18(1):25-31. PubMed ID: 21276936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dioxygen activation by copper, heme and non-heme iron enzymes: comparison of electronic structures and reactivities.
    Decker A; Solomon EI
    Curr Opin Chem Biol; 2005 Apr; 9(2):152-63. PubMed ID: 15811799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure comparison between oxidized and reduced plastocyanin from a fern, Dryopteris crassirhizoma.
    Inoue T; Gotowda M; Sugawara H; Kohzuma T; Yoshizaki F; Sugimura Y; Kai Y
    Biochemistry; 1999 Oct; 38(42):13853-61. PubMed ID: 10529231
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Classical molecular dynamics simulation of the photoinduced electron transfer dynamics of plastocyanin.
    Ungar LW; Scherer NF; Voth GA
    Biophys J; 1997 Jan; 72(1):5-17. PubMed ID: 8994588
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The crystal structure of catechol oxidase: new insight into the function of type-3 copper proteins.
    Gerdemann C; Eicken C; Krebs B
    Acc Chem Res; 2002 Mar; 35(3):183-91. PubMed ID: 11900522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Merging the best of two worlds: artificial metalloenzymes for enantioselective catalysis.
    Ringenberg MR; Ward TR
    Chem Commun (Camb); 2011 Aug; 47(30):8470-6. PubMed ID: 21603692
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of protein function: crystal packing interfaces and conformational dimerization.
    Crowley PB; Matias PM; Mi H; Firbank SJ; Banfield MJ; Dennison C
    Biochemistry; 2008 Jun; 47(25):6583-9. PubMed ID: 18479147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stopped-Flow Studies of the Reduction of the Copper Centers Suggest a Bifurcated Electron Transfer Pathway in Peptidylglycine Monooxygenase.
    Chauhan S; Hosseinzadeh P; Lu Y; Blackburn NJ
    Biochemistry; 2016 Apr; 55(13):2008-21. PubMed ID: 26982589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure-function relationships of anaerobic gas-processing metalloenzymes.
    Fontecilla-Camps JC; Amara P; Cavazza C; Nicolet Y; Volbeda A
    Nature; 2009 Aug; 460(7257):814-22. PubMed ID: 19675641
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Active-site structure and electron-transfer reactivity of plastocyanins.
    Sato K; Kohzuma T; Dennison C
    J Am Chem Soc; 2003 Feb; 125(8):2101-12. PubMed ID: 12590538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enzymatic activity mastered by altering metal coordination spheres.
    Moura I; Pauleta SR; Moura JJ
    J Biol Inorg Chem; 2008 Nov; 13(8):1185-95. PubMed ID: 18719950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural basis underlying the electron transfer features of a blue copper protein auracyanin from the photosynthetic bacterium Roseiflexus castenholzii.
    Wang C; Xin Y; Min Z; Qi J; Zhang C; Xu X
    Photosynth Res; 2020 Mar; 143(3):301-314. PubMed ID: 31933173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. QM/MM calculations with DFT for taking into account protein effects on the EPR and optical spectra of metalloproteins. Plastocyanin as a case study.
    Sinnecker S; Neese F
    J Comput Chem; 2006 Sep; 27(12):1463-75. PubMed ID: 16807973
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct and indirect electrochemical investigations of metalloenzymes.
    Hill HA; Hunt NI
    Methods Enzymol; 1993; 227():501-22. PubMed ID: 8255235
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.