These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 8384426)

  • 41. Changes in skeletal muscle SR Ca2+ pump in congestive heart failure due to myocardial infarction are prevented by angiotensin II blockade.
    Shah KR; Ganguly PK; Netticadan T; Arneja AS; Dhalla NS
    Can J Physiol Pharmacol; 2004 Jul; 82(7):438-47. PubMed ID: 15389290
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sorcin interacts with sarcoplasmic reticulum Ca(2+)-ATPase and modulates excitation-contraction coupling in the heart.
    Matsumoto T; Hisamatsu Y; Ohkusa T; Inoue N; Sato T; Suzuki S; Ikeda Y; Matsuzaki M
    Basic Res Cardiol; 2005 May; 100(3):250-62. PubMed ID: 15754088
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Redox regulation of cardiac calcium channels and transporters.
    Zima AV; Blatter LA
    Cardiovasc Res; 2006 Jul; 71(2):310-21. PubMed ID: 16581043
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sarcoplasmic reticular Ca2+ pump ATPase activity in congestive heart failure due to myocardial infarction.
    Afzal N; Dhalla NS
    Can J Cardiol; 1996 Oct; 12(10):1065-73. PubMed ID: 9191500
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metabolic end products inhibit sarcoplasmic reticulum Ca2+ release and [3H]ryanodine binding.
    Favero TG; Zable AC; Bowman MB; Thompson A; Abramson JJ
    J Appl Physiol (1985); 1995 May; 78(5):1665-72. PubMed ID: 7649900
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of hypocaloric feeding and refeeding on myocardial Ca and ATP cycling in the rat.
    O'Brien PJ; Shen H; Bissonette D; Jeejeebhoy KN
    Mol Cell Biochem; 1995 Jan; 142(2):151-61. PubMed ID: 7770067
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Altered sarcolemmal calcium channel density and Ca(2+)-pump ATPase activity in tachycardia heart failure.
    Colston JT; Kumar P; Chambers JP; Freeman GL
    Cell Calcium; 1994 Nov; 16(5):349-56. PubMed ID: 7859249
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Alterations of calcium-regulatory proteins in heart failure.
    Hasenfuss G
    Cardiovasc Res; 1998 Feb; 37(2):279-89. PubMed ID: 9614485
    [No Abstract]   [Full Text] [Related]  

  • 49. Mechanism of Ca++ release from the sarcoplasmic reticulum: a computer model.
    Glukhovsky A; Adam DR; Amitzur G; Sideman S
    Ann Biomed Eng; 1998; 26(2):213-29. PubMed ID: 9525762
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Local CA(2+) release in heart failure: timing is important.
    Sipido KR
    Circ Res; 2000 Nov; 87(11):966-8. PubMed ID: 11090539
    [No Abstract]   [Full Text] [Related]  

  • 51. MCU Overexpression Rescues Inotropy and Reverses Heart Failure by Reducing SR Ca
    Liu T; Yang N; Sidor A; O'Rourke B
    Circ Res; 2021 Apr; 128(8):1191-1204. PubMed ID: 33522833
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Alterations in calcium handling in cardiac hypertrophy and heart failure.
    Balke CW; Shorofsky SR
    Cardiovasc Res; 1998 Feb; 37(2):290-9. PubMed ID: 9614486
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative mammal model of chronic rate overload: relationship of myocardial Ca-cycling to heart, metabolic and lipoperoxidation rates.
    Martin V; McCutcheon LJ; Poon L; Shen H; Cory CR; O'Brien PJ
    Comp Biochem Physiol B; 1993 Oct; 106(2):453-61. PubMed ID: 8243066
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Central activation, metabolites, and calcium handling during fatigue with repeated maximal isometric contractions in human muscle.
    Cairns SP; Inman LAG; MacManus CP; van de Port IGL; Ruell PA; Thom JM; Thompson MW
    Eur J Appl Physiol; 2017 Aug; 117(8):1557-1571. PubMed ID: 28527013
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Arrhythmia-Induced Cardiomyopathies: Mechanisms, Recognition, and Management.
    Gopinathannair R; Etheridge SP; Marchlinski FE; Spinale FG; Lakkireddy D; Olshansky B
    J Am Coll Cardiol; 2015 Oct; 66(15):1714-28. PubMed ID: 26449143
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrophysiological modeling of cardiac ventricular function: from cell to organ.
    Winslow RL; Scollan DF; Holmes A; Yung CK; Zhang J; Jafri MS
    Annu Rev Biomed Eng; 2000; 2():119-55. PubMed ID: 11701509
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The role of 3'-untranslated region (3'-UTR) mediated mRNA stability in cardiovascular pathophysiology.
    Misquitta CM; Iyer VR; Werstiuk ES; Grover AK
    Mol Cell Biochem; 2001 Aug; 224(1-2):53-67. PubMed ID: 11693200
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cardiac Ca2+ dynamics: the roles of ryanodine receptor adaptation and sarcoplasmic reticulum load.
    Jafri MS; Rice JJ; Winslow RL
    Biophys J; 1998 Mar; 74(3):1149-68. PubMed ID: 9512016
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Compensatory up-regulation of cardiac SR Ca2+-pump by heat-shock counteracts SR Ca2+-channel activation by ischemia/reperfusion.
    O'Brien PJ; Li GO; Locke M; Klabunde RE; Ianuzzo CD
    Mol Cell Biochem; 1997 Aug; 173(1-2):135-43. PubMed ID: 9278264
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rapid, simple and sensitive microassay for skeletal muscle homogenates in the functional assessment of the Ca-release channel of sarcoplasmic reticulum: application to diagnosis of susceptibility to malignant hyperthermia.
    O'Brien PJ; Li G
    Mol Cell Biochem; 1997 Feb; 167(1-2):61-72. PubMed ID: 9059982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.