These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Alternate-strand triplex formation: modulation of binding to matched and mismatched duplexes by sequence choice in the Pu-Pu-Py block. Balatskaya SV; Belotserkovskii BP; Johnston BH Biochemistry; 1996 Oct; 35(41):13328-37. PubMed ID: 8873599 [TBL] [Abstract][Full Text] [Related]
3. Oligonucleotide-directed triple helix formation at adjacent oligopurine and oligopyrimidine DNA tracts by alternate strand recognition. Jayasena SD; Johnston BH Nucleic Acids Res; 1992 Oct; 20(20):5279-88. PubMed ID: 1437547 [TBL] [Abstract][Full Text] [Related]
4. Intramolecular triple-helix formation at (PunPyn).(PunPyn) tracts: recognition of alternate strands via Pu.PuPy and Py.PuPy base triplets. Jayasena SD; Johnston BH Biochemistry; 1992 Jan; 31(2):320-7. PubMed ID: 1731890 [TBL] [Abstract][Full Text] [Related]
5. Alternate strand recognition of double-helical DNA by (T,G)-containing oligonucleotides in the presence of a triple helix-specific ligand. de Bizemont T; Duval-Valentin G; Sun JS; Bisagni E; Garestier T; Hélène C Nucleic Acids Res; 1996 Mar; 24(6):1136-43. PubMed ID: 8604349 [TBL] [Abstract][Full Text] [Related]
6. Protection of DNA sequences by triplex-bridge formation. Kiyama R; Oishi M Nucleic Acids Res; 1995 Feb; 23(3):452-8. PubMed ID: 7885840 [TBL] [Abstract][Full Text] [Related]
7. Interaction in vitro of type III intermediate filament proteins with triplex DNA. Li G; Tolstonog GV; Traub P DNA Cell Biol; 2002 Mar; 21(3):163-88. PubMed ID: 12015895 [TBL] [Abstract][Full Text] [Related]
8. Strong, specific, monodentate G-C base pair recognition by N7-inosine derivatives in the pyrimidine.purine-pyrimidine triple-helical binding motif. Marfurt J; Parel SP; Leumann CJ Nucleic Acids Res; 1997 May; 25(10):1875-82. PubMed ID: 9115352 [TBL] [Abstract][Full Text] [Related]
9. Presence of divalent cation is not mandatory for the formation of intramolecular purine-motif triplex containing human c-jun protooncogene target. Kaushik S; Kaushik M; Svinarchuk F; Malvy C; Fermandjian S; Kukreti S Biochemistry; 2011 May; 50(19):4132-42. PubMed ID: 21381700 [TBL] [Abstract][Full Text] [Related]
10. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex. Walter A; Schütz H; Simon H; Birch-Hirschfeld E J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482 [TBL] [Abstract][Full Text] [Related]
11. DNA triple helix formation at target sites containing several pyrimidine interruptions: stabilization by protonated cytosine or 5-(1-propargylamino)dU. Gowers DM; Bijapur J; Brown T; Fox KR Biochemistry; 1999 Oct; 38(41):13747-58. PubMed ID: 10521282 [TBL] [Abstract][Full Text] [Related]
12. Bulge defects in intramolecular pyrimidine.purine.pyrimidine DNA triplexes in solution. Wang Y; Patel DJ Biochemistry; 1995 Apr; 34(16):5696-704. PubMed ID: 7727429 [TBL] [Abstract][Full Text] [Related]
13. Nuclear magnetic resonance structural studies of intramolecular purine.purine.pyrimidine DNA triplexes in solution. Base triple pairing alignments and strand direction. Radhakrishnan I; de los Santos C; Patel DJ J Mol Biol; 1991 Oct; 221(4):1403-18. PubMed ID: 1942059 [TBL] [Abstract][Full Text] [Related]
14. An intramolecular triplex structure from non-mirror repeated sequence containing both Py:Pu.Py and Pu:Pu.Py triads. Klysik J J Mol Biol; 1995 Feb; 245(5):499-507. PubMed ID: 7844822 [TBL] [Abstract][Full Text] [Related]
15. Recognition of alternating oligopurine/oligopyrimidine tracts of DNA by oligonucleotides with base-to-base linkages. Zhou BW; Marchand C; Asseline U; Thuong NT; Sun JS; Garestier T; Hélène C Bioconjug Chem; 1995; 6(5):516-23. PubMed ID: 8974448 [TBL] [Abstract][Full Text] [Related]
16. Sequence specificity of triplex DNA formation: Analysis by a combinatorial approach, restriction endonuclease protection selection and amplification. Hardenbol P; Van Dyke MW Proc Natl Acad Sci U S A; 1996 Apr; 93(7):2811-6. PubMed ID: 8610123 [TBL] [Abstract][Full Text] [Related]
17. Optimization of alternate-strand triple helix formation at the 5'CpG3' and 5'GpC3' junction steps. Marchand C; Sun JS; Bailly C; Waring MJ; Garestier T; Hélène C Biochemistry; 1998 Sep; 37(38):13322-9. PubMed ID: 9748340 [TBL] [Abstract][Full Text] [Related]
18. Specific recognition of CG base pairs by 2-deoxynebularine within the purine.purine.pyrimidine triple-helix motif. Stilz HU; Dervan PB Biochemistry; 1993 Mar; 32(9):2177-85. PubMed ID: 8443159 [TBL] [Abstract][Full Text] [Related]
19. Single strand targeted triplex-formation. Destabilization of guanine quadruplex structures by foldback triplex-forming oligonucleotides. Kandimalla ER; Agrawal S Nucleic Acids Res; 1995 Mar; 23(6):1068-74. PubMed ID: 7537368 [TBL] [Abstract][Full Text] [Related]
20. Extension of the range of DNA sequences available for triple helix formation: stabilization of mismatched triplexes by acridine-containing oligonucleotides. Kukreti S; Sun JS; Garestier T; Hélène C Nucleic Acids Res; 1997 Nov; 25(21):4264-70. PubMed ID: 9336456 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]