These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
379 related articles for article (PubMed ID: 8384699)
41. Binding of the globular domain of linker histones H5/H1 to the nucleosome: a hypothesis. Crane-Robinson C; Ptitsyn OB Protein Eng; 1989 Aug; 2(8):577-82. PubMed ID: 2682606 [TBL] [Abstract][Full Text] [Related]
42. A putative DNA binding surface in the globular domain of a linker histone is not essential for specific binding to the nucleosome. Hayes JJ; Kaplan R; Ura K; Pruss D; Wolffe A J Biol Chem; 1996 Oct; 271(42):25817-22. PubMed ID: 8824211 [TBL] [Abstract][Full Text] [Related]
43. Homo- and heteronuclear two-dimensional NMR studies of the globular domain of histone H1: full assignment, tertiary structure, and comparison with the globular domain of histone H5. Cerf C; Lippens G; Ramakrishnan V; Muyldermans S; Segers A; Wyns L; Wodak SJ; Hallenga K Biochemistry; 1994 Sep; 33(37):11079-86. PubMed ID: 7727360 [TBL] [Abstract][Full Text] [Related]
44. Homo- and heteronuclear two-dimensional NMR studies of the globular domain of histone H1: sequential assignment and secondary structure. Cerf C; Lippens G; Muyldermans S; Segers A; Ramakrishnan V; Wodak SJ; Hallenga K; Wyns L Biochemistry; 1993 Oct; 32(42):11345-51. PubMed ID: 8218199 [TBL] [Abstract][Full Text] [Related]
45. Conformational selection and dynamic adaptation upon linker histone binding to the nucleosome. Öztürk MA; Pachov GV; Wade RC; Cojocaru V Nucleic Acids Res; 2016 Aug; 44(14):6599-613. PubMed ID: 27270081 [TBL] [Abstract][Full Text] [Related]
46. The secondary structure of the ets domain of human Fli-1 resembles that of the helix-turn-helix DNA-binding motif of the Escherichia coli catabolite gene activator protein. Liang H; Olejniczak ET; Mao X; Nettesheim DG; Yu L; Thompson CB; Fesik SW Proc Natl Acad Sci U S A; 1994 Nov; 91(24):11655-9. PubMed ID: 7972119 [TBL] [Abstract][Full Text] [Related]
47. An asymmetric model for the nucleosome: a binding site for linker histones inside the DNA gyres. Pruss D; Bartholomew B; Persinger J; Hayes J; Arents G; Moudrianakis EN; Wolffe AP Science; 1996 Oct; 274(5287):614-7. PubMed ID: 8849453 [TBL] [Abstract][Full Text] [Related]
48. NMR and X-ray analysis of the three-dimensional structure of interleukin-8. Clore GM; Gronenborn AM Cytokines; 1992; 4():18-40. PubMed ID: 1472915 [No Abstract] [Full Text] [Related]
49. Linker histones: paradigm lost but questions remain. Belikov S; Karpov V FEBS Lett; 1998 Dec; 441(2):161-4. PubMed ID: 9883876 [TBL] [Abstract][Full Text] [Related]
50. Histone H1 in Saccharomyces cerevisiae: a double mystery solved? Landsman D Trends Biochem Sci; 1996 Aug; 21(8):287-8. PubMed ID: 8772381 [No Abstract] [Full Text] [Related]
51. Structural homology between the Rap30 DNA-binding domain and linker histone H5: implications for preinitiation complex assembly. Groft CM; Uljon SN; Wang R; Werner MH Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9117-22. PubMed ID: 9689043 [TBL] [Abstract][Full Text] [Related]
52. The linker histone homolog Hho1p from Saccharomyces cerevisiae represents a winged helix-turn-helix fold as determined by NMR spectroscopy. Ono K; Kusano O; Shimotakahara S; Shimizu M; Yamazaki T; Shindo H Nucleic Acids Res; 2003 Dec; 31(24):7199-207. PubMed ID: 14654695 [TBL] [Abstract][Full Text] [Related]
53. Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees. Schultz SC; Shields GC; Steitz TA Science; 1991 Aug; 253(5023):1001-7. PubMed ID: 1653449 [TBL] [Abstract][Full Text] [Related]
54. Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength x-ray diffraction on the selenomethionyl protein at 2.9-A resolution. Raghunathan S; Ricard CS; Lohman TM; Waksman G Proc Natl Acad Sci U S A; 1997 Jun; 94(13):6652-7. PubMed ID: 9192620 [TBL] [Abstract][Full Text] [Related]
55. On the structure and dynamics of the complex of the nucleosome and the linker histone. Pachov GV; Gabdoulline RR; Wade RC Nucleic Acids Res; 2011 Jul; 39(12):5255-63. PubMed ID: 21355036 [TBL] [Abstract][Full Text] [Related]
56. Two homologous domains of similar structure but different stability in the yeast linker histone, Hho1p. Ali T; Coles P; Stevens TJ; Stott K; Thomas JO J Mol Biol; 2004 Apr; 338(1):139-48. PubMed ID: 15050829 [TBL] [Abstract][Full Text] [Related]
57. Dependence of Chromatosome Structure on Linker Histone Sequence and Posttranslational Modification. Öztürk MA; Cojocaru V; Wade RC Biophys J; 2018 May; 114(10):2363-2375. PubMed ID: 29759374 [TBL] [Abstract][Full Text] [Related]
58. Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Leahy DJ; Hendrickson WA; Aukhil I; Erickson HP Science; 1992 Nov; 258(5084):987-91. PubMed ID: 1279805 [TBL] [Abstract][Full Text] [Related]
59. Selective radiolabelling and identification of a strong nucleosome binding site on the globular domain of histone H5. Thomas JO; Wilson CM EMBO J; 1986 Dec; 5(13):3531-7. PubMed ID: 3104028 [TBL] [Abstract][Full Text] [Related]
60. Where is the globular domain of linker histone located on the nucleosome? Crane-Robinson C Trends Biochem Sci; 1997 Mar; 22(3):75-7. PubMed ID: 9066255 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]