These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8384725)

  • 21. The formation of strand breaks in DNA after high-LET irradiation: a comparison of data from in vitro and cellular systems.
    Roots R; Holley W; Chatterjee A; Irizarry M; Kraft G
    Int J Radiat Biol; 1990 Jul; 58(1):55-69. PubMed ID: 1973440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Variation of single-strand break yield with scavenger concentration for plasmid DNA irradiated in aqueous solution.
    Milligan JR; Aguilera JA; Ward JF
    Radiat Res; 1993 Feb; 133(2):151-7. PubMed ID: 8382368
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation of single- and double-strand breaks of pBR322 plasmid irradiated in the presence of scavengers.
    Shao C; Saito M; Yu Z
    Radiat Environ Biophys; 1999 Jul; 38(2):105-9. PubMed ID: 10461756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of radiation quality on the formation of DNA breaks.
    Roots R; Holley W; Chatterjee A; Rachal E; Kraft G
    Adv Space Res; 1989; 9(10):45-55. PubMed ID: 11537315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Can .OH scavengers protect against direct UV-C damage in vivo?
    Ewing D
    Int J Radiat Biol; 1991 Sep; 60(3):449-52. PubMed ID: 1679085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectrum of Radiation-Induced Clustered Non-DSB Damage - A Monte Carlo Track Structure Modeling and Calculations.
    Watanabe R; Rahmanian S; Nikjoo H
    Radiat Res; 2015 May; 183(5):525-40. PubMed ID: 25909147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radiation protection of in vitro mammalian cells: effects of hydroxyl radical scavengers on the slopes and shoulders of survival curves.
    Ewing D; Walton HL
    Radiat Res; 1991 May; 126(2):187-97. PubMed ID: 1850852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement of glycolysis and CO2 formation from glycerol by hydroxyl radical scavengers in rat hepatocytes.
    Gerber E; Bredy A; Kahl R
    Res Commun Mol Pathol Pharmacol; 1996 Oct; 94(1):63-71. PubMed ID: 8948015
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of serum albumin on the radiolysis of DNA studied by constant field electrophoresis and compared to alterations caused by low molecular weight OH. scavengers.
    Distel LV; Schuessler H
    Int J Radiat Biol; 1997 Apr; 71(4):401-12. PubMed ID: 9154143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoscale analysis of clustered DNA damage after high-LET irradiation by quantitative electron microscopy--the heavy burden to repair.
    Lorat Y; Brunner CU; Schanz S; Jakob B; Taucher-Scholz G; Rübe CE
    DNA Repair (Amst); 2015 Apr; 28():93-106. PubMed ID: 25659339
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of hydroxyl radical scavenging capacity on clustering of DNA damage.
    Milligan JR; Aguilera JA; Wu CC; Paglinawan RA; Nguyen TT; Wu D; Ward JF
    Radiat Res; 1997 Oct; 148(4):325-9. PubMed ID: 9339948
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clustered DNA damage on subcellular level: effect of scavengers.
    Pachnerová Brabcová K; Sihver L; Yasuda N; Matuo Y; Stěpán V; Davídková M
    Radiat Environ Biophys; 2014 Nov; 53(4):705-12. PubMed ID: 25034012
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monte Carlo Simulation of the Oxygen Effect in DNA Damage Induction by Ionizing Radiation.
    Forster JC; Douglass MJJ; Phillips WM; Bezak E
    Radiat Res; 2018 Sep; 190(3):248-261. PubMed ID: 29953346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RBE-LET relationships for different types of lethal radiation damage in mammalian cells: comparison with DNA dsb and an interpretation of differences in radiosensitivity.
    Barendsen GW
    Int J Radiat Biol; 1994 Nov; 66(5):433-6. PubMed ID: 7983427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydroxyl radical quenching agents protect against DNA breakage caused by both 365-nm UVA and by gamma radiation.
    Peak MJ; Peak JG
    Photochem Photobiol; 1990 Jun; 51(6):649-52. PubMed ID: 2164228
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of irradiation conditions on the radiation sensitivity of microorganisms in the presence of OH-radical scavengers.
    Múčka V; Červenák J; Reimitz D; Čuba V; Bláha P; Neužilová B
    Int J Radiat Biol; 2018 Dec; 94(12):1142-1150. PubMed ID: 30451562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantification of damage to plasmid DNA from 35 MeV electrons, 228 MeV protons and 300 kVp X-rays in varying hydroxyl radical scavenging environments.
    Wanstall HC; Henthorn NT; Jones J; Santina E; Chadwick AL; Angal-Kalinin D; Morris G; Warmenhoven JW; Smith R; Mathisen S; Merchant MJ; Jones RM
    J Radiat Res; 2023 May; 64(3):547-57. PubMed ID: 37154587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA strand break induction and rejoining and cellular recovery in mammalian cells after heavy-ion irradiation.
    Heilmann J; Rink H; Taucher-Scholz G; Kraft G
    Radiat Res; 1993 Jul; 135(1):46-55. PubMed ID: 8327660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions of hydroxyl radicals with tris (hydroxymethyl) aminomethane and Good's buffers containing hydroxymethyl or hydroxyethyl residues produce formaldehyde.
    Shiraishi H; Kataoka M; Morita Y; Umemoto J
    Free Radic Res Commun; 1993; 19(5):315-21. PubMed ID: 8314112
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of various scavengers of •OH radicals on the radiation sensitivity of yeast and bacteria.
    Múčka V; Bláha P; Čuba V; Červenák J
    Int J Radiat Biol; 2013 Dec; 89(12):1045-52. PubMed ID: 23786545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.