These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
994 related articles for article (PubMed ID: 8384938)
1. Endothelium-dependent relaxation competes with alpha 1- and alpha 2-adrenergic constriction in the canine epicardial coronary microcirculation. Jones CJ; DeFily DV; Patterson JL; Chilian WM Circulation; 1993 Apr; 87(4):1264-74. PubMed ID: 8384938 [TBL] [Abstract][Full Text] [Related]
2. Functional distribution of alpha 1- and alpha 2-adrenergic receptors in the coronary microcirculation. Chilian WM Circulation; 1991 Nov; 84(5):2108-22. PubMed ID: 1682067 [TBL] [Abstract][Full Text] [Related]
3. Role of nitric oxide in the coronary microvascular responses to adenosine and increased metabolic demand. Jones CJ; Kuo L; Davis MJ; DeFily DV; Chilian WM Circulation; 1995 Mar; 91(6):1807-13. PubMed ID: 7882491 [TBL] [Abstract][Full Text] [Related]
5. Adrenergic vasomotion in the coronary microcirculation. Chilian WM Basic Res Cardiol; 1990; 85 Suppl 1():111-20. PubMed ID: 1982606 [TBL] [Abstract][Full Text] [Related]
6. Nitric oxide mediates flow-dependent epicardial coronary vasodilation to changes in pulse frequency but not mean flow in conscious dogs. Canty JM; Schwartz JS Circulation; 1994 Jan; 89(1):375-84. PubMed ID: 8281673 [TBL] [Abstract][Full Text] [Related]
8. Endogenous adenosine modulates alpha 2- but not alpha 1-adrenergic constriction of coronary arterioles. DeFily DV; Patterson JL; Chilian WM Am J Physiol; 1995 Jun; 268(6 Pt 2):H2487-94. PubMed ID: 7611499 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of noradrenergic constriction of large coronary arteries by inhibition of nitric oxide synthesis in anaesthetized dogs. Woodman OL; Pannangpetch P Br J Pharmacol; 1994 Jun; 112(2):443-8. PubMed ID: 7915608 [TBL] [Abstract][Full Text] [Related]
10. Effect of an arginine analogue on acetylcholine-induced coronary microvascular dilatation in dogs. Komaru T; Lamping KG; Eastham CL; Harrison DG; Marcus ML; Dellsperger KC Am J Physiol; 1991 Dec; 261(6 Pt 2):H2001-7. PubMed ID: 1750548 [TBL] [Abstract][Full Text] [Related]
11. Role of nitric oxide and endothelium in the flow-induced dilation of rat coronary arteries under two preconstriction conditions. Véquaud P; Pourageaud F; Freslon JL Clin Exp Pharmacol Physiol; 1999; 26(5-6):470-6. PubMed ID: 10386241 [TBL] [Abstract][Full Text] [Related]
12. Reduced nitric oxide formation causes coronary vasoconstriction and impaired dilator responses to endogenous agonists and hypoxia in dogs. Huckstorf C; Zanzinger J; Fink B; Bassenge E Naunyn Schmiedebergs Arch Pharmacol; 1994 Apr; 349(4):367-73. PubMed ID: 7914678 [TBL] [Abstract][Full Text] [Related]
13. Beta 2-adrenergic dilation of conductance coronary arteries involves flow-dependent NO formation in conscious dogs. Hamdad N; Ming Z; Parent R; Lavallée M Am J Physiol; 1996 Nov; 271(5 Pt 2):H1926-37. PubMed ID: 8945911 [TBL] [Abstract][Full Text] [Related]
14. Chronic inhibition of endothelium-derived nitric oxide synthesis causes coronary microvascular structural changes and hyperreactivity to serotonin in pigs. Ito A; Egashira K; Kadokami T; Fukumoto Y; Takayanagi T; Nakaike R; Kuga T; Sueishi K; Shimokawa H; Takeshita A Circulation; 1995 Nov; 92(9):2636-44. PubMed ID: 7586367 [TBL] [Abstract][Full Text] [Related]
15. Direct coronary and cerebral vascular responses to dexmedetomidine. Significance of endogenous nitric oxide synthesis. Coughlan MG; Lee JG; Bosnjak ZJ; Schmeling WT; Kampine JP; Warltier DC Anesthesiology; 1992 Nov; 77(5):998-1006. PubMed ID: 1359812 [TBL] [Abstract][Full Text] [Related]
16. Endothelial function and adrenergic reactivity in human type-II diabetic resistance arteries. Cipolla MJ; Harker CT; Porter JM J Vasc Surg; 1996 May; 23(5):940-9. PubMed ID: 8667520 [TBL] [Abstract][Full Text] [Related]
17. Contribution of nitric oxide to metabolic coronary vasodilation in the human heart. Quyyumi AA; Dakak N; Andrews NP; Gilligan DM; Panza JA; Cannon RO Circulation; 1995 Aug; 92(3):320-6. PubMed ID: 7634444 [TBL] [Abstract][Full Text] [Related]
18. Contribution of nitric oxide to coronary vasodilation during hypercapnic acidosis. Gurevicius J; Salem MR; Metwally AA; Silver JM; Crystal GJ Am J Physiol; 1995 Jan; 268(1 Pt 2):H39-47. PubMed ID: 7530920 [TBL] [Abstract][Full Text] [Related]
19. Effect of diadenosine tetraphosphate (AP4A) on coronary arterial microvessels in the beating canine heart. Sugimura A; Kanatsuka H; Tanikawa T; Ong BH; Shirato K Jpn Circ J; 2000 Nov; 64(11):868-75. PubMed ID: 11110433 [TBL] [Abstract][Full Text] [Related]
20. Interaction between microvascular alpha 1- and alpha 2-adrenoceptors and endothelium-derived relaxing factor. Ohyanagi M; Nishigaki K; Faber JE Circ Res; 1992 Jul; 71(1):188-200. PubMed ID: 1318795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]