These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 8385260)
1. Solvate structures in water-methanol solutions of MRI contrast agents: electron spin echo envelope modulation in gadolinium chelates. Clarkson RB; Hwang JH; Belford RL Magn Reson Med; 1993 Apr; 29(4):521-7. PubMed ID: 8385260 [TBL] [Abstract][Full Text] [Related]
2. Prediction of q-values and conformations of gadolinium chelates for magnetic resonance imaging. Castonguay LA; Treasurywala AM; Caulfield TJ; Jaeger EP; Kellar KE Bioconjug Chem; 1999; 10(6):958-64. PubMed ID: 10563764 [TBL] [Abstract][Full Text] [Related]
3. Hyperfine coupling constants on inner-sphere water molecules of Gd(III)-based MRI contrast agents. Esteban-Gómez D; de Blas A; Rodríguez-Blas T; Helm L; Platas-Iglesias C Chemphyschem; 2012 Nov; 13(16):3640-50. PubMed ID: 22927182 [TBL] [Abstract][Full Text] [Related]
4. Kinetics of the exchange reactions between Gd(DTPA)2-, Gd(BOPTA)2-, and Gd(DTPA-BMA) complexes, used as MRI contrast agents, and the triethylenetetraamine-hexaacetate ligand. Pálinkás Z; Baranyai Z; Brücher E; Rózsa B Inorg Chem; 2011 Apr; 50(8):3471-8. PubMed ID: 21405037 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of two new gadolinium chelates as contrast agents for MRI. Wiegers CB; Welch MJ; Sharp TL; Brown JJ; Perman WH; Sun Y; Motekaitis RJ; Martell AE Magn Reson Imaging; 1992; 10(6):903-11. PubMed ID: 1461088 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of polyaza macrocyclic methylene phosphonate chelates of Gd3+ ions as MRI contrast agents. Geraldes CF; Brown RD; Cacheris WP; Koenig SH; Sherry AD; Spiller M Magn Reson Med; 1989 Jan; 9(1):94-104. PubMed ID: 2540397 [TBL] [Abstract][Full Text] [Related]
7. GdIII complexes with fast water exchange and high thermodynamic stability: potential building blocks for high-relaxivity MRI contrast agents. Laus S; Ruloff R; Tóth E; Merbach AE Chemistry; 2003 Aug; 9(15):3555-66. PubMed ID: 12898682 [TBL] [Abstract][Full Text] [Related]
8. The measurement of extracellular water volumes in tissues by gadolinium modification of 1H-NMR spin lattice (T1) relaxation. Braunschweiger PG; Schiffer L; Furmanski P Magn Reson Imaging; 1986; 4(4):285-91. PubMed ID: 3118123 [TBL] [Abstract][Full Text] [Related]
9. Nuclear magnetic relaxation dispersion profiles of aqueous solutions of a series of Gd(NOTA) analogs. Geraldes CF; Brown RD; Brucher E; Koenig SH; Sherry AD; Spiller M Magn Reson Med; 1992 Oct; 27(2):284-95. PubMed ID: 1334203 [TBL] [Abstract][Full Text] [Related]
10. Gadolinium cryptelates as MR contrast agents. Knop RH; Frank JA; Dwyer AJ; Girton ME; Naegele M; Schrader M; Cobb J; Gansow O; Maegerstadt M; Brechbiel M J Comput Assist Tomogr; 1987; 11(1):35-42. PubMed ID: 3805426 [TBL] [Abstract][Full Text] [Related]
11. Hepatobiliary enhancement with Gd-EOB-DTPA: comparison of spin-echo and STIR imaging for detection of experimental liver metastases. Mühler A; Clément O; Vexler V; Berthezène Y; Rosenau W; Brasch RC Radiology; 1992 Jul; 184(1):207-13. PubMed ID: 1609081 [TBL] [Abstract][Full Text] [Related]
12. From the relaxivity of Gd(DTPA)2- to everything else. Koenig SH Magn Reson Med; 1991 Dec; 22(2):183-90. PubMed ID: 1812344 [TBL] [Abstract][Full Text] [Related]
13. The use of a binary chelate formulation: Could gadolinium based linear contrast agents be rescued by the addition of zinc selective chelates? Gibby W; Parish W; Merrill RM; Fernandez D; Anderson CR; Merchel E; Parr R Magn Reson Imaging; 2019 May; 58():76-81. PubMed ID: 30639754 [TBL] [Abstract][Full Text] [Related]
14. [Preoperative staging of bladder carcinomas with Gd-DTPA-supported dynamic magnetic resonance tomography. Comparison with plain and Gd-DTPA-supported spin-echo sequences]. Venz S; Hosten N; Ilg J; Mäurer J; Podrabsky P; Fedel M; Ebert T; Nagel R Rofo; 1996 Mar; 164(3):218-25. PubMed ID: 8672777 [TBL] [Abstract][Full Text] [Related]
15. Metal chelates as urographic contrast agents for magnetic resonance imaging. A comparative study. Marotti M; Schmiedl U; White D; Ramos E; Johnson T; Engelstad B Rofo; 1987 Jan; 146(1):89-93. PubMed ID: 3027795 [TBL] [Abstract][Full Text] [Related]
16. Albumin labeled with Gd-DTPA. An intravascular contrast-enhancing agent for magnetic resonance blood pool imaging: preparation and characterization. Ogan MD; Schmiedl U; Moseley ME; Grodd W; Paajanen H; Brasch RC Invest Radiol; 1987 Aug; 22(8):665-71. PubMed ID: 3667174 [TBL] [Abstract][Full Text] [Related]
17. Gadolinium-DTPA-enhanced MR imaging of spinal neoplasms: preliminary investigation and comparison with unenhanced spin-echo and STIR sequences. Stimac GK; Porter BA; Olson DO; Gerlach R; Genton M AJR Am J Roentgenol; 1988 Dec; 151(6):1185-92. PubMed ID: 3055895 [TBL] [Abstract][Full Text] [Related]
18. Preparation, physico-chemical characterization, and relaxometry studies of various gadolinium(III)-DTPA-bis(amide) derivatives as potential magnetic resonance contrast agents. Geraldes CF; Urbano AM; Alpoim MC; Sherry AD; Kuan KT; Rajagopalan R; Maton F; Muller RN Magn Reson Imaging; 1995; 13(3):401-20. PubMed ID: 7791550 [TBL] [Abstract][Full Text] [Related]
19. Lanthanide chelates of (bis)-hydroxymethyl-substituted DTTA with potential application as contrast agents in magnetic resonance imaging. Silvério S; Torres S; Martins AF; Martins JA; André JP; Helm L; Prata MI; Santos AC; Geraldes CF Dalton Trans; 2009 Jun; (24):4656-70. PubMed ID: 19513474 [TBL] [Abstract][Full Text] [Related]
20. Comparative transmetallation kinetics and thermodynamic stability of gadolinium-DTPA bis-glucosamide and other magnetic resonance imaging contrast media. Puttagunta NR; Gibby WA; Puttagunta VL Invest Radiol; 1996 Oct; 31(10):619-24. PubMed ID: 8889650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]