BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8385518)

  • 1. Cooperative hydrogen ligand binding inducing the Bohr effect in human hemoglobin. A general methodology.
    Forlani L; Marini MA
    Cell Mol Biol (Noisy-le-grand); 1993 Feb; 39(1):21-34. PubMed ID: 8385518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for the heterotropic and homotropic interactions of invertebrate giant hemoglobin.
    Numoto N; Nakagawa T; Kita A; Sasayama Y; Fukumori Y; Miki K
    Biochemistry; 2008 Oct; 47(43):11231-8. PubMed ID: 18834142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen binding and its allosteric control in hemoglobin of the primitive branchiopod crustacean Triops cancriformis.
    Pirow R; Hellmann N; Weber RE
    FEBS J; 2007 Jul; 274(13):3374-91. PubMed ID: 17550418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnesium(II) and zinc(II)-protoporphyrin IX's stabilize the lowest oxygen affinity state of human hemoglobin even more strongly than deoxyheme.
    Miyazaki G; Morimoto H; Yun KM; Park SY; Nakagawa A; Minagawa H; Shibayama N
    J Mol Biol; 1999 Oct; 292(5):1121-36. PubMed ID: 10512707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bohr-effect and buffering capacity of hemocyanin from the tarantula E. californicum.
    Hellmann N
    Biophys Chem; 2004 Apr; 109(1):157-67. PubMed ID: 15059668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Root effect hemoglobins.
    Brittain T
    J Inorg Biochem; 2005 Jan; 99(1):120-9. PubMed ID: 15598496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The alkaline Bohr effect: regulation of O2 binding with triliganded hemoglobin Hb(O2)3].
    Dzhagarov BM; Kruk NN
    Biofizika; 1996; 41(3):606-12. PubMed ID: 8924460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular modelling of Trematomus newnesi Hb 1: insights for a lowered oxygen affinity and lack of root effect.
    D'Avino R; De Luca R
    Proteins; 2000 May; 39(2):155-65. PubMed ID: 10737936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of substitutions of lysine and aspartic acid for asparagine at beta 108 and of tryptophan for valine at alpha 96 on the structural and functional properties of human normal adult hemoglobin: roles of alpha 1 beta 1 and alpha 1 beta 2 subunit interfaces in the cooperative oxygenation process.
    Tsai CH; Shen TJ; Ho NT; Ho C
    Biochemistry; 1999 Jul; 38(27):8751-61. PubMed ID: 10393550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactions of Mycobacterium tuberculosis truncated hemoglobin O with ligands reveal a novel ligand-inclusive hydrogen bond network.
    Ouellet H; Juszczak L; Dantsker D; Samuni U; Ouellet YH; Savard PY; Wittenberg JB; Wittenberg BA; Friedman JM; Guertin M
    Biochemistry; 2003 May; 42(19):5764-74. PubMed ID: 12741834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the hemoglobins of the adult brushtailed possum, Trichosurus vulpecula (Kerr) reveals non-genetic heterogeneity.
    Henty K; Wells RM; Brittain T
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Nov; 148(3):498-503. PubMed ID: 17689995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of asparagine at alpha 97 to the cooperative oxygenation process of hemoglobin.
    Kim HW; Shen TJ; Ho NT; Zou M; Tam MF; Ho C
    Biochemistry; 1996 May; 35(21):6620-7. PubMed ID: 8639610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Half-site reactivity, negative cooperativity, and positive cooperativity: quantitative considerations of a plausible model.
    Bloom CR; Kaarsholm NC; Ha J; Dunn MF
    Biochemistry; 1997 Oct; 36(42):12759-65. PubMed ID: 9335532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Cl- and H+ on the oxygen binding properties of glutaraldehyde-polymerized bovine hemoglobin-based blood substitutes.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(5):1543-9. PubMed ID: 15458341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemoglobin and the origins of the concept of allosterism.
    Edsall JT
    Fed Proc; 1980 Feb; 39(2):226-35. PubMed ID: 6986293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative model for the cooperative mechanism of human hemoglobin.
    Johnson ML; Turner BW; Ackers GK
    Proc Natl Acad Sci U S A; 1984 Feb; 81(4):1093-7. PubMed ID: 6583698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydropathic analysis of the non-covalent interactions between molecular subunits of structurally characterized hemoglobins.
    Abraham DJ; Kellogg GE; Holt JM; Ackers GK
    J Mol Biol; 1997 Oct; 272(4):613-32. PubMed ID: 9325116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation of cooperative free energies between ligation systems of hemoglobin: resolution of the carbon monoxide binding intermediates.
    Huang Y; Ackers GK
    Biochemistry; 1996 Jan; 35(3):704-18. PubMed ID: 8547251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio quantum mechanical study of the binding energies of human estrogen receptor alpha with its ligands: an application of fragment molecular orbital method.
    Fukuzawa K; Kitaura K; Uebayasi M; Nakata K; Kaminuma T; Nakano T
    J Comput Chem; 2005 Jan; 26(1):1-10. PubMed ID: 15521089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics of subunit assembly and ligand binding in human hemoglobin.
    Ackers GK
    Biophys J; 1980 Oct; 32(1):331-46. PubMed ID: 7248452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.