BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 8385579)

  • 1. Cellular responses to chronic treatment with drugs of abuse.
    Nestler EJ
    Crit Rev Neurobiol; 1993; 7(1):23-39. PubMed ID: 8385579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reflections on: "A general role for adaptations in G-Proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function".
    Nestler EJ
    Brain Res; 2016 Aug; 1645():71-4. PubMed ID: 26740398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function.
    Terwilliger RZ; Beitner-Johnson D; Sevarino KA; Crain SM; Nestler EJ
    Brain Res; 1991 May; 548(1-2):100-10. PubMed ID: 1651140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cocaine-induced expression changes of axon guidance molecules in the adult rat brain.
    Bahi A; Dreyer JL
    Mol Cell Neurosci; 2005 Feb; 28(2):275-91. PubMed ID: 15691709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical actions of chronic ethanol exposure in the mesolimbic dopamine system.
    Ortiz J; Fitzgerald LW; Charlton M; Lane S; Trevisan L; Guitart X; Shoemaker W; Duman RS; Nestler EJ
    Synapse; 1995 Dec; 21(4):289-98. PubMed ID: 8869159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opioid abuse and brain gene expression.
    Przewlocki R
    Eur J Pharmacol; 2004 Oct; 500(1-3):331-49. PubMed ID: 15464044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of opioid gene expression: a model to understand neural plasticity.
    Comb MJ; Kobierski L; Chu HM; Tan Y; Borsook D; Herrup K; Hyman SE
    NIDA Res Monogr; 1992; 126():98-112. PubMed ID: 1491720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antisense-induced reduction in nucleus accumbens cyclic AMP response element binding protein attenuates cocaine reinforcement.
    Choi KH; Whisler K; Graham DL; Self DW
    Neuroscience; 2006; 137(2):373-83. PubMed ID: 16359811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of chronic Fos-related antigens in rat brain by chronic morphine administration.
    Nye HE; Nestler EJ
    Mol Pharmacol; 1996 Apr; 49(4):636-45. PubMed ID: 8609891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphine down-regulates melanocortin-4 receptor expression in brain regions that mediate opiate addiction.
    Alvaro JD; Tatro JB; Quillan JM; Fogliano M; Eisenhard M; Lerner MR; Nestler EJ; Duman RS
    Mol Pharmacol; 1996 Sep; 50(3):583-91. PubMed ID: 8794897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms of drug addiction: adaptations in signal transduction pathways.
    Nestler EJ; Berhow MT; Brodkin ES
    Mol Psychiatry; 1996 Jul; 1(3):190-9. PubMed ID: 9118343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanisms of drug addiction.
    Nestler EJ
    Neuropharmacology; 2004; 47 Suppl 1():24-32. PubMed ID: 15464123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphine-induced changes of gene expression in the brain.
    Ammon-Treiber S; Höllt V
    Addict Biol; 2005 Mar; 10(1):81-9. PubMed ID: 15849022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of CREB expression: in vivo evidence for a functional role in morphine action in the nucleus accumbens.
    Widnell KL; Self DW; Lane SB; Russell DS; Vaidya VA; Miserendino MJ; Rubin CS; Duman RS; Nestler EJ
    J Pharmacol Exp Ther; 1996 Jan; 276(1):306-15. PubMed ID: 8558448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggression and defeat: persistent effects on cocaine self-administration and gene expression in peptidergic and aminergic mesocorticolimbic circuits.
    Miczek KA; Covington HE; Nikulina EM; Hammer RP
    Neurosci Biobehav Rev; 2004 Jan; 27(8):787-802. PubMed ID: 15019428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cell biologist's perspective on physiological adaptation to opiate drugs.
    von Zastrow M
    Neuropharmacology; 2004; 47 Suppl 1():286-92. PubMed ID: 15464144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The orbitofrontal cortex, impulsivity, and addiction: probing orbitofrontal dysfunction at the neural, neurochemical, and molecular level.
    Winstanley CA
    Ann N Y Acad Sci; 2007 Dec; 1121():639-55. PubMed ID: 17846162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cocaine addiction as a neurological disorder: implications for treatment.
    Majewska MD
    NIDA Res Monogr; 1996; 163():1-26. PubMed ID: 8809851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs.
    Cunha-Oliveira T; Rego AC; Oliveira CR
    Brain Res Rev; 2008 Jun; 58(1):192-208. PubMed ID: 18440072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations in fos-related antigen 2 and sigma1 receptor gene and protein expression are associated with the development of cocaine-induced behavioral sensitization: time course and regional distribution studies.
    Liu Y; Matsumoto RR
    J Pharmacol Exp Ther; 2008 Oct; 327(1):187-95. PubMed ID: 18591217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.