These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 8385635)
41. Ovotransferrin possesses SOD-like superoxide anion scavenging activity that is promoted by copper and manganese binding. Ibrahim HR; Hoq MI; Aoki T Int J Biol Macromol; 2007 Dec; 41(5):631-40. PubMed ID: 17919719 [TBL] [Abstract][Full Text] [Related]
42. On the role of hydroxyl radical and the effect of tetrandrine on nuclear factor--kappaB activation by phorbol 12-myristate 13-acetate. Ye J; Ding M; Zhang X; Rojanasakul Y; Shi X Ann Clin Lab Sci; 2000 Jan; 30(1):65-71. PubMed ID: 10678585 [TBL] [Abstract][Full Text] [Related]
43. An in vitro EPR study of the free-radical scavenging actions of the lazaroid antioxidants U-74500A and U-78517F. Zhao W; Richardson JS; Mombourquette MJ; Weil JA Free Radic Biol Med; 1995 Jul; 19(1):21-30. PubMed ID: 7635355 [TBL] [Abstract][Full Text] [Related]
44. Generation of hydroxyl radicals during dismutation of superoxide by SOD model compounds. Ueda J; Sudo A; Mori A; Ozawa T Arch Biochem Biophys; 1994 Nov; 315(1):185-9. PubMed ID: 7979397 [TBL] [Abstract][Full Text] [Related]
45. Existence of a new reactive intermediate oxygen species in hypoxanthine and xanthine oxidase reaction. Sato E; Mokudai T; Niwano Y; Kamibayashi M; Kohno M Chem Pharm Bull (Tokyo); 2008 Aug; 56(8):1194-7. PubMed ID: 18670127 [TBL] [Abstract][Full Text] [Related]
46. Superoxide anion radical scavenging activities of herbs and pastures in northern Japan determined using electron spin resonance spectrometry. Al-Mamun M; Yamaki K; Masumizu T; Nakai Y; Saito K; Sano H; Tamura Y Int J Biol Sci; 2007 Jul; 3(6):349-55. PubMed ID: 17713599 [TBL] [Abstract][Full Text] [Related]
47. Scavenging effect of berbamine on active oxygen radicals in phorbol ester-stimulated human polymorphonuclear leukocytes. Ju HS; Li XJ; Zhao BL; Han ZW; Xin WJ Biochem Pharmacol; 1990 Jun; 39(11):1673-8. PubMed ID: 2160816 [TBL] [Abstract][Full Text] [Related]
48. Free radical scavenging activity of the novel anti-ulcer agent rebamipide studied by electron spin resonance. Yoshikawa T; Naito Y; Tanigawa T; Kondo M Arzneimittelforschung; 1993 Mar; 43(3):363-6. PubMed ID: 8387788 [TBL] [Abstract][Full Text] [Related]
49. Comparative investigation of superoxide trapping by cyclic nitrone spin traps: the use of singular value decomposition and multiple linear regression analysis. Keszler A; Kalyanaraman B; Hogg N Free Radic Biol Med; 2003 Nov; 35(9):1149-57. PubMed ID: 14572617 [TBL] [Abstract][Full Text] [Related]
50. Wine polyphenols and ethanol do not significantly scavenge superoxide nor affect endothelial nitric oxide production. Huisman A; Van De Wiel A; Rabelink TJ; Van Faassen EE J Nutr Biochem; 2004 Jul; 15(7):426-32. PubMed ID: 15219928 [TBL] [Abstract][Full Text] [Related]
51. Adenosines scavenged hydroxyl radicals and prevented posttraumatic epilepsy. Yokoi I; Toma J; Liu J; Kabuto H; Mori A Free Radic Biol Med; 1995 Oct; 19(4):473-9. PubMed ID: 7590396 [TBL] [Abstract][Full Text] [Related]
52. EPR studies on the superoxide-scavenging capacity of the nutraceutical resveratrol. Jia Z; Zhu H; Misra BR; Mahaney JE; Li Y; Misra HP Mol Cell Biochem; 2008 Jun; 313(1-2):187-94. PubMed ID: 18409032 [TBL] [Abstract][Full Text] [Related]
53. Direct measurement of superoxide anion produced in biological systems by ESR spectrometry: a pH-jump method. Fujii H; Kakinuma K J Biochem; 1990 Dec; 108(6):983-7. PubMed ID: 1965191 [TBL] [Abstract][Full Text] [Related]
54. Determination of antioxidant activity of herbs by ESR. Yun YS; Nakajima Y; Iseda E; Kunugi A Shokuhin Eiseigaku Zasshi; 2003 Feb; 44(1):59-62. PubMed ID: 12749199 [TBL] [Abstract][Full Text] [Related]
55. Scavenging effects of Aspalathus linealis (Rooibos tea) on active oxygen species. Yoshikawa T; Naito Y; Oyamada H; Ueda S; Tanigawa T; Takemura T; Sugino S; Kondo M Adv Exp Med Biol; 1990; 264():171-4. PubMed ID: 2173870 [No Abstract] [Full Text] [Related]
56. Characterization of the xanthine oxidase inhibitory activity of alk(en)yl phenols and related compounds. Masuoka N; Kubo I Phytochemistry; 2018 Nov; 155():100-106. PubMed ID: 30096514 [TBL] [Abstract][Full Text] [Related]
57. Does the reduced form of neopterin serve as an antioxidant? Mori H; Arai T; Mori K; Suzuki T; Makino K Biochem Mol Biol Int; 1996 Nov; 40(4):799-806. PubMed ID: 8950038 [TBL] [Abstract][Full Text] [Related]
58. Photosensitized formation of ascorbate radicals by chloroaluminum phthalocyanine tetrasulfonate: an electron spin resonance study. Kim H; Rosenthal I; Kirschenbaum LJ; Riesz P Free Radic Biol Med; 1992 Sep; 13(3):231-8. PubMed ID: 1324204 [TBL] [Abstract][Full Text] [Related]
59. Barlerisides A and B, new potent superoxide scavenging phenolic glycosides from Barleria acanthoides. Karim A; Noor AT; Malik A; Qadir MI; Choudhary MI J Enzyme Inhib Med Chem; 2009 Dec; 24(6):1332-5. PubMed ID: 19912065 [TBL] [Abstract][Full Text] [Related]
60. Mechanism of inhibition of prostaglandin H synthase by eugenol and other phenolic peroxidase substrates. Thompson D; Eling T Mol Pharmacol; 1989 Nov; 36(5):809-17. PubMed ID: 2511429 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]