These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8385890)

  • 1. Functional expression of recombinant G-protein-coupled receptors monitored by video imaging of pigment movement in melanophores.
    McClintock TS; Graminski GF; Potenza MN; Jayawickreme CK; Roby-Shemkovitz A; Lerner MR
    Anal Biochem; 1993 Mar; 209(2):298-305. PubMed ID: 8385890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smoothened activates Galphai-mediated signaling in frog melanophores.
    DeCamp DL; Thompson TM; de Sauvage FJ; Lerner MR
    J Biol Chem; 2000 Aug; 275(34):26322-7. PubMed ID: 10835429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pigment dispersion in frog melanophores can be induced by a phorbol ester or stimulation of a recombinant receptor that activates phospholipase C.
    Graminski GF; Jayawickreme CK; Potenza MN; Lerner MR
    J Biol Chem; 1993 Mar; 268(8):5957-64. PubMed ID: 8383680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein kinase C activation antagonizes melatonin-induced pigment aggregation in Xenopus laevis melanophores.
    Sugden D; Rowe SJ
    J Cell Biol; 1992 Dec; 119(6):1515-21. PubMed ID: 1334961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for evaluating the effects of ligands upon Gs protein-coupled receptors using a recombinant melanophore-based bioassay.
    Potenza MN; Graminski GF; Lerner MR
    Anal Biochem; 1992 Nov; 206(2):315-22. PubMed ID: 1332547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterotrimeric kinesin II is the microtubule motor protein responsible for pigment dispersion in Xenopus melanophores.
    Tuma MC; Zill A; Le Bot N; Vernos I; Gelfand V
    J Cell Biol; 1998 Dec; 143(6):1547-58. PubMed ID: 9852150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of organelle movement in melanophores by protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2A (PP2A).
    Reilein AR; Tint IS; Peunova NI; Enikolopov GN; Gelfand VI
    J Cell Biol; 1998 Aug; 142(3):803-13. PubMed ID: 9700167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and characterization of an endothelin-3 specific receptor (ETC receptor) from Xenopus laevis dermal melanophores.
    Karne S; Jayawickreme CK; Lerner MR
    J Biol Chem; 1993 Sep; 268(25):19126-33. PubMed ID: 8360195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Height changes associated with pigment aggregation in Xenopus laevis melanophores.
    Immerstrand C; Nilsson HM; Lindroth M; Sundqvist T; Magnusson KE; Peterson KH
    Biosci Rep; 2004 Jun; 24(3):203-14. PubMed ID: 16209129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregation of pigment granules in single cultured Xenopus laevis melanophores by melatonin analogues.
    Sugden D
    Br J Pharmacol; 1991 Dec; 104(4):922-7. PubMed ID: 1667293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional expression and characterization of human D2 and D3 dopamine receptors.
    Potenza MN; Graminski GF; Schmauss C; Lerner MR
    J Neurosci; 1994 Mar; 14(3 Pt 2):1463-76. PubMed ID: 7907363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melatonin-induced organelle movement in melanophores is coupled to tyrosine phosphorylation of a high molecular weight protein.
    Karlsson AM; Lerner MR; Unett D; Lundström I; Svensson SP
    Cell Signal; 2000 Jul; 12(7):469-74. PubMed ID: 10989282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An endogenous 5-HT(7) receptor mediates pigment granule dispersion in Xenopus laevis melanophores.
    Teh MT; Sugden D
    Br J Pharmacol; 2001 Apr; 132(8):1799-808. PubMed ID: 11309252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional analysis by imaging of melanophore pigment dispersion of chimeric receptors constructed by recombinant polymerase chain reaction.
    McClintock TS; Lerner MR
    Brain Res Brain Res Protoc; 1997 Dec; 2(1):59-68. PubMed ID: 9438073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of constitutive G protein-coupled receptor activity for drug discovery.
    Chen G; Way J; Armour S; Watson C; Queen K; Jayawickreme CK; Chen WJ; Kenakin T
    Mol Pharmacol; 2000 Jan; 57(1):125-34. PubMed ID: 10617687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosensing of opioids using frog melanophores.
    Karlsson AM; Bjuhr K; Testorf M; Oberg PA; Lerner E; Lundstrom I; Svensson SP
    Biosens Bioelectron; 2002 Apr; 17(4):331-5. PubMed ID: 11849930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role for spectrin in dynactin-dependent melanosome transport in Xenopus laevis melanophores.
    Aspengren S; Wallin M
    Pigment Cell Res; 2004 Jun; 17(3):295-301. PubMed ID: 15140076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The putative melatonin receptor antagonist GR128107 is a partial agonist on Xenopus laevis melanophores.
    Teh MT; Sugden D
    Br J Pharmacol; 1999 Mar; 126(5):1237-45. PubMed ID: 10205014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tools for Investigating Functional Interactions Between Lipid-Derived Autacoids and their Receptors.
    Lerner MR; Golovyan L; Graminski GF; Harris K; Huang L; Jayawickreme CK; Karne S; McClintock TS; Potenza MN; Roby-Shemkovitz A; Quillan M
    Am J Ther; 1996 Apr; 3(4):280-286. PubMed ID: 11862262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Actin and tubulin arrays in cultured Xenopus melanophores responding to melatonin.
    Rollag MD; Adelman MR
    Pigment Cell Res; 1993 Oct; 6(5):365-71. PubMed ID: 8302775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.