These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 8385925)
1. Sodium channel blockade enhances dispersion of the cardiac action potential duration. A computer simulation study. Müller A; Dhein S Basic Res Cardiol; 1993; 88(1):11-22. PubMed ID: 8385925 [TBL] [Abstract][Full Text] [Related]
2. Proarrhythmic response to potassium channel blockade. Numerical studies of polymorphic tachyarrhythmias. Starmer CF; Romashko DN; Reddy RS; Zilberter YI; Starobin J; Grant AO; Krinsky VI Circulation; 1995 Aug; 92(3):595-605. PubMed ID: 7634474 [TBL] [Abstract][Full Text] [Related]
3. A computational modelling approach combined with cellular electrophysiology data provides insights into the therapeutic benefit of targeting the late Na+ current. Yang PC; Song Y; Giles WR; Horvath B; Chen-Izu Y; Belardinelli L; Rajamani S; Clancy CE J Physiol; 2015 Mar; 593(6):1429-42. PubMed ID: 25545172 [TBL] [Abstract][Full Text] [Related]
4. Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration. Shaw RM; Rudy Y Cardiovasc Res; 1997 Aug; 35(2):256-72. PubMed ID: 9349389 [TBL] [Abstract][Full Text] [Related]
5. Proarrhythmic response to sodium channel blockade. Theoretical model and numerical experiments. Starmer CF; Lastra AA; Nesterenko VV; Grant AO Circulation; 1991 Sep; 84(3):1364-77. PubMed ID: 1653123 [TBL] [Abstract][Full Text] [Related]
6. Dispersion of cardiac action potential duration and the initiation of re-entry: a computational study. Clayton RH; Holden AV Biomed Eng Online; 2005 Feb; 4():11. PubMed ID: 15720712 [TBL] [Abstract][Full Text] [Related]
7. ATX-II effects on the apparent location of M cells in a computational model of a human left ventricular wedge. Dos Santos RW; Otaviano Campos F; Neumann Ciuffo L; Nygren A; Giles W; Koch H J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S86-S95. PubMed ID: 16686688 [TBL] [Abstract][Full Text] [Related]
8. Ischemic modulation of vulnerable period and the effects of pharmacological treatment of ischemia-induced arrhythmias: a simulation study. Cimponeriu A; Starmer CF; Bezerianos A IEEE Trans Biomed Eng; 2003 Feb; 50(2):168-77. PubMed ID: 12665030 [TBL] [Abstract][Full Text] [Related]
9. The effect of myocardial action potential duration on cardiac pumping efficacy: a computational study. Jeong DU; Lim KM Biomed Eng Online; 2018 Jun; 17(1):79. PubMed ID: 29907152 [TBL] [Abstract][Full Text] [Related]
10. Cellular uncoupling can unmask dispersion of action potential duration in ventricular myocardium. A computer modeling study. Lesh MD; Pring M; Spear JF Circ Res; 1989 Nov; 65(5):1426-40. PubMed ID: 2805251 [TBL] [Abstract][Full Text] [Related]
11. Effect of pacing and mexiletine on dispersion of repolarisation and arrhythmias in DeltaKPQ SCN5A (long QT3) mice. Fabritz L; Kirchhof P; Franz MR; Nuyens D; Rossenbacker T; Ottenhof A; Haverkamp W; Breithardt G; Carmeliet E; Carmeliet P Cardiovasc Res; 2003 Mar; 57(4):1085-93. PubMed ID: 12650887 [TBL] [Abstract][Full Text] [Related]
12. Molecular basis of ranolazine block of LQT-3 mutant sodium channels: evidence for site of action. Fredj S; Sampson KJ; Liu H; Kass RS Br J Pharmacol; 2006 May; 148(1):16-24. PubMed ID: 16520744 [TBL] [Abstract][Full Text] [Related]
13. New aspects of vulnerability in heterogeneous models of ventricular wall and its modulation by loss of cardiac sodium channel function. Kapela A; Tsoukias N; Bezerianos A Med Biol Eng Comput; 2005 May; 43(3):387-94. PubMed ID: 16035228 [TBL] [Abstract][Full Text] [Related]
14. Electrotonic influences on action potential duration dispersion in small hearts: a simulation study. Sampson KJ; Henriquez CS Am J Physiol Heart Circ Physiol; 2005 Jul; 289(1):H350-60. PubMed ID: 15734889 [TBL] [Abstract][Full Text] [Related]
15. Modelling changes in transmural propagation and susceptibility to arrhythmia induced by volatile anaesthetics in ventricular tissue. Zhang H; Tao T; Kharche S; Harrison SM J Theor Biol; 2009 Mar; 257(2):279-91. PubMed ID: 19135456 [TBL] [Abstract][Full Text] [Related]
16. Effects of Na(+) channel and cell coupling abnormalities on vulnerability to reentry: a simulation study. Qu Z; Karagueuzian HS; Garfinkel A; Weiss JN Am J Physiol Heart Circ Physiol; 2004 Apr; 286(4):H1310-21. PubMed ID: 14630634 [TBL] [Abstract][Full Text] [Related]
17. Magnetic fields from simulated cardiac action currents. Barach JP; Wikswo JP IEEE Trans Biomed Eng; 1994 Oct; 41(10):969-74. PubMed ID: 7959804 [TBL] [Abstract][Full Text] [Related]
18. Drug-induced post-repolarization refractoriness as an antiarrhythmic principle and its underlying mechanism. Franz MR; Gray RA; Karasik P; Moore HJ; Singh SN Europace; 2014 Nov; 16 Suppl 4():iv39-iv45. PubMed ID: 25362169 [TBL] [Abstract][Full Text] [Related]
19. Intracellular calcium and electrical restitution in mammalian cardiac cells. Szigligeti P; Bányász T; Magyar J; Szigeti G; Papp Z; Varró A; Nánási PP Acta Physiol Scand; 1998 Jun; 163(2):139-47. PubMed ID: 9648632 [TBL] [Abstract][Full Text] [Related]
20. Increased dispersion of ventricular repolarization and ventricular tachyarrhythmias in the globally ischaemic rabbit heart. Kurz RW; Xiao-Lin R; Franz MR Eur Heart J; 1993 Nov; 14(11):1561-71. PubMed ID: 8299641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]