BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 8385933)

  • 1. delta-Aminolaevulinate synthase expression in muscle after contractions and recovery.
    Takahashi M; McCurdy DT; Essig DA; Hood DA
    Biochem J; 1993 Apr; 291 ( Pt 1)(Pt 1):219-23. PubMed ID: 8385933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochrome oxidase in muscle of endurance-trained rats: subunit mRNA contents and heme synthesis.
    Town GP; Essig DA
    J Appl Physiol (1985); 1993 Jan; 74(1):192-6. PubMed ID: 8383107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5'-Aminolevulinate synthase activity is decreased in skeletal muscle of anemic rats.
    McNabney LA; Essig DA
    Am J Physiol; 1992 Aug; 263(2 Pt 1):C429-35. PubMed ID: 1325116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of stress proteins and mitochondrial chaperonins in chronically stimulated skeletal muscle.
    Ornatsky OI; Connor MK; Hood DA
    Biochem J; 1995 Oct; 311 ( Pt 1)(Pt 1):119-23. PubMed ID: 7575442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erythroid 5-aminolevulinate synthase, ferrochelatase and DMT1 expression in erythroid progenitors: differential pathways for erythropoietin and iron-dependent regulation.
    Zoller H; Decristoforo C; Weiss G
    Br J Haematol; 2002 Aug; 118(2):619-26. PubMed ID: 12139757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of delta-aminolaevulinate synthase encoded by the parasite gene in de novo haem synthesis by Plasmodium falciparum.
    Varadharajan S; Dhanasekaran S; Bonday ZQ; Rangarajan PN; Padmanaban G
    Biochem J; 2002 Oct; 367(Pt 2):321-7. PubMed ID: 12119044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of iron supply in the regulation of 5-aminolevulinate synthase mRNA levels in murine erythroleukemia cells.
    Fuchs O; Ponka P
    Neoplasma; 1996; 43(1):31-6. PubMed ID: 8843957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel regulation of delta-aminolevulinate synthase in the rat harderian gland.
    Nagai M; Nagai T; Yamamoto M; Goto K; Bishop TR; Hayashi N; Kondo H; Seyama Y; Kano K; Fujita H; Sassa S
    Biochem Pharmacol; 1997 Mar; 53(5):643-50. PubMed ID: 9113083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and expression of the gene encoding rat nonspecific form delta-aminolevulinate synthase.
    Yomogida K; Yamamoto M; Yamagami T; Fujita H; Hayashi N
    J Biochem; 1993 Mar; 113(3):364-71. PubMed ID: 8486608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erythroleukemia differentiation. Distinctive responses of the erythroid-specific and the nonspecific delta-aminolevulinate synthase mRNA.
    Fujita H; Yamamoto M; Yamagami T; Hayashi N; Sassa S
    J Biol Chem; 1991 Sep; 266(26):17494-502. PubMed ID: 1894633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examination of mitochondrial protein targeting of haem synthetic enzymes: in vivo identification of three functional haem-responsive motifs in 5-aminolaevulinate synthase.
    Dailey TA; Woodruff JH; Dailey HA
    Biochem J; 2005 Mar; 386(Pt 2):381-6. PubMed ID: 15482256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 5-Aminolaevulinate synthase gene promoter contains two cAMP-response element (CRE)-like sites that confer positive and negative responsiveness to CRE-binding protein (CREB).
    Giono LE; Varone CL; Cánepa ET
    Biochem J; 2001 Jan; 353(Pt 2):307-16. PubMed ID: 11139395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue-specific stability of nuclear- and mitochondrially encoded mRNAs.
    Connor MK; Takahashi M; Hood DA
    Arch Biochem Biophys; 1996 Sep; 333(1):103-8. PubMed ID: 8806759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of thyroid status on the expression of metabolic enzymes during chronic stimulation.
    Hood DA; Simoneau JA; Kelly AM; Pette D
    Am J Physiol; 1992 Oct; 263(4 Pt 1):C788-93. PubMed ID: 1329543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochrome c transcriptional activation and mRNA stability during contractile activity in skeletal muscle.
    Freyssenet D; Connor MK; Takahashi M; Hood DA
    Am J Physiol; 1999 Jul; 277(1):E26-32. PubMed ID: 10409124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of 5'-aminolevulinate synthase activity in overloaded skeletal muscle.
    Essig DA; Kennedy JM; McNabney LA
    Am J Physiol; 1990 Aug; 259(2 Pt 1):C310-4. PubMed ID: 2382704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation of skeletal muscle to increased contractile activity. Expression nuclear genes encoding mitochondrial proteins.
    Williams RS; Garcia-Moll M; Mellor J; Salmons S; Harlan W
    J Biol Chem; 1987 Feb; 262(6):2764-7. PubMed ID: 2880844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial adaptations in denervated muscle: relationship to muscle performance.
    Wicks KL; Hood DA
    Am J Physiol; 1991 Apr; 260(4 Pt 1):C841-50. PubMed ID: 1850197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic stimulation of rat skeletal muscle induces coordinate increases in mitochondrial and nuclear mRNAs of cytochrome-c-oxidase subunits.
    Hood DA; Zak R; Pette D
    Eur J Biochem; 1989 Feb; 179(2):275-80. PubMed ID: 2537205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Haem regulation of the mitochondrial import of the Kluyveromyces lactis 5-aminolaevulinate synthase: an organelle approach.
    González-Domínguez M; Freire-Picos MA; Cerdán ME
    Yeast; 2001 Jan; 18(1):41-8. PubMed ID: 11124700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.