These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 8385933)
1. delta-Aminolaevulinate synthase expression in muscle after contractions and recovery. Takahashi M; McCurdy DT; Essig DA; Hood DA Biochem J; 1993 Apr; 291 ( Pt 1)(Pt 1):219-23. PubMed ID: 8385933 [TBL] [Abstract][Full Text] [Related]
2. Cytochrome oxidase in muscle of endurance-trained rats: subunit mRNA contents and heme synthesis. Town GP; Essig DA J Appl Physiol (1985); 1993 Jan; 74(1):192-6. PubMed ID: 8383107 [TBL] [Abstract][Full Text] [Related]
3. 5'-Aminolevulinate synthase activity is decreased in skeletal muscle of anemic rats. McNabney LA; Essig DA Am J Physiol; 1992 Aug; 263(2 Pt 1):C429-35. PubMed ID: 1325116 [TBL] [Abstract][Full Text] [Related]
4. Expression of stress proteins and mitochondrial chaperonins in chronically stimulated skeletal muscle. Ornatsky OI; Connor MK; Hood DA Biochem J; 1995 Oct; 311 ( Pt 1)(Pt 1):119-23. PubMed ID: 7575442 [TBL] [Abstract][Full Text] [Related]
5. Erythroid 5-aminolevulinate synthase, ferrochelatase and DMT1 expression in erythroid progenitors: differential pathways for erythropoietin and iron-dependent regulation. Zoller H; Decristoforo C; Weiss G Br J Haematol; 2002 Aug; 118(2):619-26. PubMed ID: 12139757 [TBL] [Abstract][Full Text] [Related]
6. Involvement of delta-aminolaevulinate synthase encoded by the parasite gene in de novo haem synthesis by Plasmodium falciparum. Varadharajan S; Dhanasekaran S; Bonday ZQ; Rangarajan PN; Padmanaban G Biochem J; 2002 Oct; 367(Pt 2):321-7. PubMed ID: 12119044 [TBL] [Abstract][Full Text] [Related]
7. The role of iron supply in the regulation of 5-aminolevulinate synthase mRNA levels in murine erythroleukemia cells. Fuchs O; Ponka P Neoplasma; 1996; 43(1):31-6. PubMed ID: 8843957 [TBL] [Abstract][Full Text] [Related]
8. Novel regulation of delta-aminolevulinate synthase in the rat harderian gland. Nagai M; Nagai T; Yamamoto M; Goto K; Bishop TR; Hayashi N; Kondo H; Seyama Y; Kano K; Fujita H; Sassa S Biochem Pharmacol; 1997 Mar; 53(5):643-50. PubMed ID: 9113083 [TBL] [Abstract][Full Text] [Related]
9. Structure and expression of the gene encoding rat nonspecific form delta-aminolevulinate synthase. Yomogida K; Yamamoto M; Yamagami T; Fujita H; Hayashi N J Biochem; 1993 Mar; 113(3):364-71. PubMed ID: 8486608 [TBL] [Abstract][Full Text] [Related]
10. Erythroleukemia differentiation. Distinctive responses of the erythroid-specific and the nonspecific delta-aminolevulinate synthase mRNA. Fujita H; Yamamoto M; Yamagami T; Hayashi N; Sassa S J Biol Chem; 1991 Sep; 266(26):17494-502. PubMed ID: 1894633 [TBL] [Abstract][Full Text] [Related]
11. Examination of mitochondrial protein targeting of haem synthetic enzymes: in vivo identification of three functional haem-responsive motifs in 5-aminolaevulinate synthase. Dailey TA; Woodruff JH; Dailey HA Biochem J; 2005 Mar; 386(Pt 2):381-6. PubMed ID: 15482256 [TBL] [Abstract][Full Text] [Related]
12. 5-Aminolaevulinate synthase gene promoter contains two cAMP-response element (CRE)-like sites that confer positive and negative responsiveness to CRE-binding protein (CREB). Giono LE; Varone CL; Cánepa ET Biochem J; 2001 Jan; 353(Pt 2):307-16. PubMed ID: 11139395 [TBL] [Abstract][Full Text] [Related]
13. Tissue-specific stability of nuclear- and mitochondrially encoded mRNAs. Connor MK; Takahashi M; Hood DA Arch Biochem Biophys; 1996 Sep; 333(1):103-8. PubMed ID: 8806759 [TBL] [Abstract][Full Text] [Related]
14. Effect of thyroid status on the expression of metabolic enzymes during chronic stimulation. Hood DA; Simoneau JA; Kelly AM; Pette D Am J Physiol; 1992 Oct; 263(4 Pt 1):C788-93. PubMed ID: 1329543 [TBL] [Abstract][Full Text] [Related]
15. Cytochrome c transcriptional activation and mRNA stability during contractile activity in skeletal muscle. Freyssenet D; Connor MK; Takahashi M; Hood DA Am J Physiol; 1999 Jul; 277(1):E26-32. PubMed ID: 10409124 [TBL] [Abstract][Full Text] [Related]
16. Regulation of 5'-aminolevulinate synthase activity in overloaded skeletal muscle. Essig DA; Kennedy JM; McNabney LA Am J Physiol; 1990 Aug; 259(2 Pt 1):C310-4. PubMed ID: 2382704 [TBL] [Abstract][Full Text] [Related]
17. Adaptation of skeletal muscle to increased contractile activity. Expression nuclear genes encoding mitochondrial proteins. Williams RS; Garcia-Moll M; Mellor J; Salmons S; Harlan W J Biol Chem; 1987 Feb; 262(6):2764-7. PubMed ID: 2880844 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial adaptations in denervated muscle: relationship to muscle performance. Wicks KL; Hood DA Am J Physiol; 1991 Apr; 260(4 Pt 1):C841-50. PubMed ID: 1850197 [TBL] [Abstract][Full Text] [Related]
19. Chronic stimulation of rat skeletal muscle induces coordinate increases in mitochondrial and nuclear mRNAs of cytochrome-c-oxidase subunits. Hood DA; Zak R; Pette D Eur J Biochem; 1989 Feb; 179(2):275-80. PubMed ID: 2537205 [TBL] [Abstract][Full Text] [Related]
20. Haem regulation of the mitochondrial import of the Kluyveromyces lactis 5-aminolaevulinate synthase: an organelle approach. González-Domínguez M; Freire-Picos MA; Cerdán ME Yeast; 2001 Jan; 18(1):41-8. PubMed ID: 11124700 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]