These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 8386009)
1. Using nitroxide spin labels. How to obtain T1e from continuous wave electron paramagnetic resonance spectra at all rotational rates. Haas DA; Mailer C; Robinson BH Biophys J; 1993 Mar; 64(3):594-604. PubMed ID: 8386009 [TBL] [Abstract][Full Text] [Related]
2. Comparing continuous wave progressive saturation EPR and time domain saturation recovery EPR over the entire motional range of nitroxide spin labels. Nielsen RD; Canaan S; Gladden JA; Gelb MH; Mailer C; Robinson BH J Magn Reson; 2004 Jul; 169(1):129-63. PubMed ID: 15183364 [TBL] [Abstract][Full Text] [Related]
3. Relaxation time determinations by progressive saturation EPR: effects of molecular motion and Zeeman modulation for spin labels. Livshits VA; Páli T; Marsh D J Magn Reson; 1998 Jul; 133(1):79-91. PubMed ID: 9654471 [TBL] [Abstract][Full Text] [Related]
4. A novel approach to the simulation of nitroxide spin label EPR spectra from a single truncated dynamical trajectory. Oganesyan VS J Magn Reson; 2007 Oct; 188(2):196-205. PubMed ID: 17689278 [TBL] [Abstract][Full Text] [Related]
6. Determination of T1-spin-lattice relaxation time in a two-level system by continuous wave multiquantum electron paramagnetic resonance spectroscopy in a presence of tetrachromatic microwave irradiation. Dutka M; Gurbiel RJ; Kozioł J; Froncisz W J Magn Reson; 2004 Oct; 170(2):220-7. PubMed ID: 15388084 [TBL] [Abstract][Full Text] [Related]
7. Exploring Structure, Dynamics, and Topology of Nitroxide Spin-Labeled Proteins Using Continuous-Wave Electron Paramagnetic Resonance Spectroscopy. Altenbach C; López CJ; Hideg K; Hubbell WL Methods Enzymol; 2015; 564():59-100. PubMed ID: 26477248 [TBL] [Abstract][Full Text] [Related]
9. Diffusion Coefficient and Relaxation Time of Aliphatic Spin Probes in a Unique Triglyceride Membrane. Nakagawa K Langmuir; 2003 Jun; 19(12):5078-5082. PubMed ID: 27676262 [TBL] [Abstract][Full Text] [Related]
10. Simulating electron spin resonance spectra of macromolecules labeled with two dipolar-coupled nitroxide spin labels from trajectories. Sezer D; Sigurdsson ST Phys Chem Chem Phys; 2011 Jul; 13(28):12785-97. PubMed ID: 21691643 [TBL] [Abstract][Full Text] [Related]
11. Development and Application of Spin Traps, Spin Probes, and Spin Labels. Bagryanskaya EG; Krumkacheva OA; Fedin MV; Marque SR Methods Enzymol; 2015; 563():365-96. PubMed ID: 26478492 [TBL] [Abstract][Full Text] [Related]
12. Nitroxide spin labels and EPR spectroscopy: A powerful association for protein dynamics studies. Torricella F; Pierro A; Mileo E; Belle V; Bonucci A Biochim Biophys Acta Proteins Proteom; 2021 Jul; 1869(7):140653. PubMed ID: 33757896 [TBL] [Abstract][Full Text] [Related]
14. On the possible manifestation of harmonic-anharmonic dynamical transition in glassy media in electron paramagnetic resonance of nitroxide spin probes. Dzuba SA; Kirilina EP; Salnikov ES J Chem Phys; 2006 Aug; 125(5):054502. PubMed ID: 16942221 [TBL] [Abstract][Full Text] [Related]
15. Distance measurements by continuous wave EPR spectroscopy to monitor protein folding. Cooke JA; Brown LJ Methods Mol Biol; 2011; 752():73-96. PubMed ID: 21713632 [TBL] [Abstract][Full Text] [Related]
19. Exchange rates at the lipid-protein interface of the myelin proteolipid protein determined by saturation transfer electron spin resonance and continuous wave saturation studies. Horváth LI; Brophy PJ; Marsh D Biophys J; 1993 Mar; 64(3):622-31. PubMed ID: 7682453 [TBL] [Abstract][Full Text] [Related]
20. Simulation of saturation transfer electron paramagnetic resonance spectra for rotational motion with restricted angular amplitude. Howard EC; Lindahl KM; Polnaszek CF; Thomas DD Biophys J; 1993 Mar; 64(3):581-93. PubMed ID: 8386008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]