These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 8386177)
1. Cell-free repair of UV-damaged simian virus 40 chromosomes in human cell extracts. II. Defective DNA repair synthesis by xeroderma pigmentosum cell extracts. Masutani C; Sugasawa K; Asahina H; Tanaka K; Hanaoka F J Biol Chem; 1993 Apr; 268(12):9105-9. PubMed ID: 8386177 [TBL] [Abstract][Full Text] [Related]
2. Replication of damaged DNA: molecular defect in xeroderma pigmentosum variant cells. Cordonnier AM; Fuchs RP Mutat Res; 1999 Oct; 435(2):111-9. PubMed ID: 10556591 [TBL] [Abstract][Full Text] [Related]
3. Repair of damaged DNA by extracts from a xeroderma pigmentosum complementation group A revertant and expression of a protein absent in its parental cell line. Jones CJ; Cleaver JE; Wood RD Nucleic Acids Res; 1992 Mar; 20(5):991-5. PubMed ID: 1549511 [TBL] [Abstract][Full Text] [Related]
4. Relationship of the xeroderma pigmentosum group E DNA repair defect to the chromatin and DNA binding proteins UV-DDB and replication protein A. Rapić Otrin V; Kuraoka I; Nardo T; McLenigan M; Eker AP; Stefanini M; Levine AS; Wood RD Mol Cell Biol; 1998 Jun; 18(6):3182-90. PubMed ID: 9584159 [TBL] [Abstract][Full Text] [Related]
5. Cell-free repair of UV-damaged simian virus 40 chromosomes in human cell extracts. I. Development of a cell-free system detecting excision repair of UV-irradiated SV40 chromosomes. Sugasawa K; Masutani C; Hanaoka F J Biol Chem; 1993 Apr; 268(12):9098-104. PubMed ID: 8386176 [TBL] [Abstract][Full Text] [Related]
6. Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc-finger domain. Tanaka K; Miura N; Satokata I; Miyamoto I; Yoshida MC; Satoh Y; Kondo S; Yasui A; Okayama H; Okada Y Nature; 1990 Nov; 348(6296):73-6. PubMed ID: 2234061 [TBL] [Abstract][Full Text] [Related]
7. Preferential binding of the xeroderma pigmentosum group A complementing protein to damaged DNA. Jones CJ; Wood RD Biochemistry; 1993 Nov; 32(45):12096-104. PubMed ID: 8218288 [TBL] [Abstract][Full Text] [Related]
8. Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts. Wood RD; Robins P; Lindahl T Cell; 1988 Apr; 53(1):97-106. PubMed ID: 3349527 [TBL] [Abstract][Full Text] [Related]
9. Complementation of the xeroderma pigmentosum DNA repair synthesis defect with Escherichia coli UvrABC proteins in a cell-free system. Hansson J; Grossman L; Lindahl T; Wood RD Nucleic Acids Res; 1990 Jan; 18(1):35-40. PubMed ID: 2408009 [TBL] [Abstract][Full Text] [Related]
10. Analysis of point mutations in an ultraviolet-irradiated shuttle vector plasmid propagated in cells from Japanese xeroderma pigmentosum patients in complementation groups A and F. Yagi T; Tatsumi-Miyajima J; Sato M; Kraemer KH; Takebe H Cancer Res; 1991 Jun; 51(12):3177-82. PubMed ID: 2039995 [TBL] [Abstract][Full Text] [Related]
11. Identification and characterization of xpac protein, the gene product of the human XPAC (xeroderma pigmentosum group A complementing) gene. Miura N; Miyamoto I; Asahina H; Satokata I; Tanaka K; Okada Y J Biol Chem; 1991 Oct; 266(29):19786-9. PubMed ID: 1918083 [TBL] [Abstract][Full Text] [Related]
12. Partial complementation of the DNA repair defects in cells from xeroderma pigmentosum groups A, C, D and F but not G by the denV gene from bacteriophage T4. Francis MA; Bagga P; Athwal R; Rainbow AJ Photochem Photobiol; 2000 Sep; 72(3):365-73. PubMed ID: 10989608 [TBL] [Abstract][Full Text] [Related]
13. Host-cell reactivation of ultraviolet-irradiated SV40 DNA in five complementation groups of xeroderma pigmentosum. Abrahams PJ; Van der Eb AJ Mutat Res; 1976 Apr; 35(1):13-22. PubMed ID: 178998 [TBL] [Abstract][Full Text] [Related]
14. Isolation and partial characterization of virus-transformed cell lines representing the A, G and variant complementation groups of xeroderma pigmentosum. Barbis DP; Schultz RA; Friedberg EC Mutat Res; 1986 May; 165(3):175-84. PubMed ID: 3010096 [TBL] [Abstract][Full Text] [Related]
15. Co-correction of the ERCC1, ERCC4 and xeroderma pigmentosum group F DNA repair defects in vitro. Biggerstaff M; Szymkowski DE; Wood RD EMBO J; 1993 Sep; 12(9):3685-92. PubMed ID: 8253090 [TBL] [Abstract][Full Text] [Related]
16. Xeroderma pigmentosum: in vitro complementation of DNA repair endonuclease. Helland D; Kleppe R; Lillehaug JR; Kleppe K Carcinogenesis; 1984 Jun; 5(6):833-6. PubMed ID: 6233045 [TBL] [Abstract][Full Text] [Related]
17. Survival of UV-irradiated vaccinia virus in normal and xeroderma pigmentosum fibroblasts; evidence for repair of UV-damaged viral DNA. Klein B; Filon AR; van Zeeland AA; van der Eb AJ Mutat Res; 1994 May; 307(1):25-32. PubMed ID: 7513804 [TBL] [Abstract][Full Text] [Related]
18. Abnormal, error-prone bypass of photoproducts by xeroderma pigmentosum variant cell extracts results in extreme strand bias for the kinds of mutations induced by UV light. McGregor WG; Wei D; Maher VM; McCormick JJ Mol Cell Biol; 1999 Jan; 19(1):147-54. PubMed ID: 9858539 [TBL] [Abstract][Full Text] [Related]
19. Transient correction of excision repair defects in fibroblasts of 9 xeroderma pigmentosum complementation groups by microinjection of crude human cell extracts. Vermeulen W; Osseweijer P; de Jonge AJ; Hoeijmakers JH Mutat Res; 1986 May; 165(3):199-206. PubMed ID: 3517635 [TBL] [Abstract][Full Text] [Related]
20. Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity. Masutani C; Araki M; Yamada A; Kusumoto R; Nogimori T; Maekawa T; Iwai S; Hanaoka F EMBO J; 1999 Jun; 18(12):3491-501. PubMed ID: 10369688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]