These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 8386345)

  • 1. Possible involvement of mu 2-mediated mechanisms in mu-mediated antitussive activity in the mouse.
    Kamei J; Iwamoto Y; Kawashima N; Suzuki T; Nagase H; Misawa M; Kasuya Y
    Neurosci Lett; 1993 Jan; 149(2):169-72. PubMed ID: 8386345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of mu-mediated antitussive activity in rats by a delta agonist.
    Kamei J; Tanihara H; Kasuya Y
    Eur J Pharmacol; 1991 Oct; 203(1):153-6. PubMed ID: 1665789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for differential modulation of mu-opioid receptor-mediated antinociceptive and antitussive activities by spleen-derived factor(s) from diabetic mice.
    Kamei J; Iwamoto Y; Misawa M; Nagase H; Kasuya Y
    Neuropharmacology; 1994 Dec; 33(12):1553-8. PubMed ID: 7760978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential modulation of mu-opioid receptor-mediated antitussive activity by delta-opioid receptor agonists in mice.
    Kamei J; Iwamoto Y; Suzuki T; Nagase H; Misawa M; Kasuya Y
    Eur J Pharmacol; 1993 Mar; 234(1):117-20. PubMed ID: 8386091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antagonistic effect of buprenorphine on the antitussive effect of morphine is mediated via the activation of mu 1-opioid receptors.
    Kamei J; Saitoh A; Morita K; Nagase H
    Life Sci; 1995; 57(16):PL231-5. PubMed ID: 7564887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of opioidergic and serotonergic mechanisms in cough and antitussives.
    Kamei J
    Pulm Pharmacol; 1996; 9(5-6):349-56. PubMed ID: 9232674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociation of opioid antinociception and central gastrointestinal propulsion in the mouse: studies with naloxonazine.
    Heyman JS; Williams CL; Burks TF; Mosberg HI; Porreca F
    J Pharmacol Exp Ther; 1988 Apr; 245(1):238-43. PubMed ID: 2834537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective antagonism by naloxonazine of antinociception by Tyr-D-Arg-Phe-beta-Ala, a novel dermorphin analogue with high affinity at mu-opioid receptors.
    Sakurada S; Takeda S; Sato T; Hayashi T; Yuki M; Kutsuwa M; Tan-No K; Sakurada C; Kisara K; Sakurada T
    Eur J Pharmacol; 2000 Apr; 395(2):107-12. PubMed ID: 10794815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of mu-opioid agonist-induced locomotor activity and development of morphine dependence by diabetes.
    Kamei J; Ohsawa M; Saitoh A; Iwamoto Y; Suzuki T; Misawa M; Nagase H; Kasuya Y
    J Pharmacol Exp Ther; 1995 Aug; 274(2):700-6. PubMed ID: 7636731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Tyr-W-MIF-1 analog containing D-Pro2 discriminates among antinociception in mice mediated by different classes of mu-opioid receptors.
    Nakayama D; Watanabe C; Watanabe H; Mizoguchi H; Sakurada T; Sakurada S
    Eur J Pharmacol; 2007 Jun; 563(1-3):109-16. PubMed ID: 17343845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The antitussive effects of endomorphin-1 and endomorphin-2 in mice.
    Kamei J; Morita K; Saitoh A; Nagase H
    Eur J Pharmacol; 2003 Apr; 467(1-3):219-22. PubMed ID: 12706478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of mu-opioid receptors in the antitussive effects of pentazocine.
    Kamei J; Katsuma K; Kasuya Y
    Naunyn Schmiedebergs Arch Pharmacol; 1992 Feb; 345(2):203-8. PubMed ID: 1314961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Mechanisms of central antitussives].
    Kamei J
    Nihon Yakurigaku Zasshi; 1998 Jun; 111(6):345-55. PubMed ID: 9720082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DAMGO stimulates the hypothalamo-pituitary-adrenal axis through a mu-2 opioid receptor.
    Eisenberg RM
    J Pharmacol Exp Ther; 1993 Aug; 266(2):985-91. PubMed ID: 8394926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delta opioid receptor enhancement of mu opioid receptor-induced antinociception in spinal cord.
    He L; Lee NM
    J Pharmacol Exp Ther; 1998 Jun; 285(3):1181-6. PubMed ID: 9618421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heroin acts on different opioid receptors than morphine in Swiss Webster and ICR mice to produce antinociception.
    Rady JJ; Roerig SC; Fujimoto JM
    J Pharmacol Exp Ther; 1991 Feb; 256(2):448-57. PubMed ID: 1847196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different mu receptor subtypes mediate spinal and supraspinal analgesia in mice.
    Paul D; Bodnar RJ; Gistrak MA; Pasternak GW
    Eur J Pharmacol; 1989 Sep; 168(3):307-14. PubMed ID: 2555205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrocinnamoyl and chlorocinnamoyl derivatives of dihydrocodeinone: in vivo and in vitro characterization of mu-selective agonist and antagonist activity.
    McLaughlin JP; Hill KP; Jiang Q; Sebastian A; Archer S; Bidlack JM
    J Pharmacol Exp Ther; 1999 Apr; 289(1):304-11. PubMed ID: 10087018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Streptozotocin-induced diabetes selectively alters the potency of analgesia produced by mu-opioid agonists, but not by delta- and kappa-opioid agonists.
    Kamei J; Ohhashi Y; Aoki T; Kawasima N; Kasuya Y
    Brain Res; 1992 Feb; 571(2):199-203. PubMed ID: 1319265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of mu-mediated antinociception by delta agonists: characterization with antagonists.
    Heyman JS; Jiang Q; Rothman RB; Mosberg HI; Porreca F
    Eur J Pharmacol; 1989 Oct; 169(1):43-52. PubMed ID: 2557223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.