These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8386412)

  • 1. The application of 13C-labelled short chain fatty acids to measure acetate and propionate production rates in the large intestines. Studies in a pig model.
    Breves G; Schulze E; Sallmann HP; Gädeken D
    Z Gastroenterol; 1993 Mar; 31(3):179-82. PubMed ID: 8386412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dietary fibre and fermentability characteristics of root crops and legumes.
    Mallillin AC; Trinidad TP; Raterta R; Dagbay K; Loyola AS
    Br J Nutr; 2008 Sep; 100(3):485-8. PubMed ID: 18331664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the amount of dietary fiber on the available energy from hindgut fermentation in growing pigs: use of cannulated pigs and in vitro fermentation.
    Anguita M; Canibe N; Pérez JF; Jensen BB
    J Anim Sci; 2006 Oct; 84(10):2766-78. PubMed ID: 16971578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactitol enhances short-chain fatty acid and gas production by swine cecal microflora to a greater extent when fermenting low rather than high fiber diets.
    Piva A; Panciroli A; Meola E; Formigoni A
    J Nutr; 1996 Jan; 126(1):280-9. PubMed ID: 8558313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chicory increases acetate turnover, but not propionate and butyrate peripheral turnovers in rats.
    Pouteau E; Rochat F; Jann A; Meirim I; Sanchez-Garcia JL; Ornstein K; German B; Ballèvre O
    Br J Nutr; 2008 Feb; 99(2):287-96. PubMed ID: 17761014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-chain fatty acids produced in vitro from fibre residues obtained from mixed diets containing different breads and in human faeces during the ingestion of the diets.
    Wisker E; Daniel M; Rave G; Feldheim W
    Br J Nutr; 2000 Jul; 84(1):31-7. PubMed ID: 10961158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production rates and metabolism of short-chain fatty acids in the colon and whole body using stable isotopes.
    Pouteau E; Nguyen P; Ballèvre O; Krempf M
    Proc Nutr Soc; 2003 Feb; 62(1):87-93. PubMed ID: 12740063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intestinal degradation in pigs of rye dietary fibre with different structural characteristics.
    Glitsø LV; Brunsgaard G; Højsgaard S; Sandström B; Bach Knudsen KE
    Br J Nutr; 1998 Nov; 80(5):457-68. PubMed ID: 9924268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of in Vivo Colonic Short Chain Fatty Acid Production from Inulin.
    Boets E; Deroover L; Houben E; Vermeulen K; Gomand SV; Delcour JA; Verbeke K
    Nutrients; 2015 Oct; 7(11):8916-29. PubMed ID: 26516911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of source and concentrations of dietary fiber on in vivo nitrogen excretion pathways in pigs as reflected by in vitro fermentation and nitrogen incorporation by fecal bacteria.
    Bindelle J; Buldgen A; Delacollette M; Wavreille J; Agneessens R; Destain JP; Leterme P
    J Anim Sci; 2009 Feb; 87(2):583-93. PubMed ID: 18791157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutral detergent fiber disappearance and gas and volatile fatty acid production during the in vitro fermentation of six forages.
    Doane PH; Schofield P; Pell AN
    J Anim Sci; 1997 Dec; 75(12):3342-52. PubMed ID: 9420010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of short-chain fatty acids from different dietary fibre sources in the rat caecum.
    Berggren AM; Nyman EM; Björck IM; Eggum BO
    Eur J Clin Nutr; 1995 Oct; 49 Suppl 3():S233-4. PubMed ID: 8549534
    [No Abstract]   [Full Text] [Related]  

  • 13. Inter-relationship of microbial activity, digestion and gut health in the rabbit: effect of substituting fibre by starch in diets having a high proportion of rapidly fermentable polysaccharides.
    Gidenne T; Jehl N; Lapanouse A; Segura M
    Br J Nutr; 2004 Jul; 92(1):95-104. PubMed ID: 15230992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of sodium fumarate addition on rumen fermentation in vitro.
    López S; Valdés C; Newbold CJ; Wallace RJ
    Br J Nutr; 1999 Jan; 81(1):59-64. PubMed ID: 10341677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short chain fatty acids inhibit human (SW1116) colon cancer cell invasion by reducing urokinase plasminogen activator activity and stimulating TIMP-1 and TIMP-2 activities, rather than via MMP modulation.
    Emenaker NJ; Basson MD
    J Surg Res; 1998 Apr; 76(1):41-6. PubMed ID: 9695737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Butyrate production from oligofructose fermentation by the human faecal flora: what is the contribution of extracellular acetate and lactate?
    Morrison DJ; Mackay WG; Edwards CA; Preston T; Dodson B; Weaver LT
    Br J Nutr; 2006 Sep; 96(3):570-7. PubMed ID: 16925864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Portal recovery of short-chain fatty acids infused into the temporarily-isolated and washed reticulo-rumen of sheep.
    Kristensen NB; Gäbel G; Pierzynowski SG; Danfaer A
    Br J Nutr; 2000 Oct; 84(4):477-82. PubMed ID: 11103218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolite production during in vitro colonic fermentation of dietary fiber: analysis and comparison of two European diets.
    Tabernero M; Venema K; Maathuis AJ; Saura-Calixto FD
    J Agric Food Chem; 2011 Aug; 59(16):8968-75. PubMed ID: 21761861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypocholesterolemic effect of dietary fiber: relation to intestinal fermentation and bile acid excretion.
    Kishimoto Y; Wakabayashi S; Takeda H
    J Nutr Sci Vitaminol (Tokyo); 1995 Feb; 41(1):151-61. PubMed ID: 7616321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial Fermentation of Water-Soluble Cellulose Acetate Raises Large-Bowel Acetate and Propionate and Decreases Plasma Cholesterol Concentrations in Rats.
    Genda T; Kondo T; Sugiura S; Hino S; Shimamoto S; Nakamura T; Ukita S; Morita T
    J Agric Food Chem; 2018 Nov; 66(45):11909-11916. PubMed ID: 30354117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.