These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 8386557)
1. Osteoblast-like cell (MC3T3-E1) proliferation on bioerodible polymers: an approach towards the development of a bone-bioerodible polymer composite material. Elgendy HM; Norman ME; Keaton AR; Laurencin CT Biomaterials; 1993; 14(4):263-9. PubMed ID: 8386557 [TBL] [Abstract][Full Text] [Related]
2. Pretreatment of poly(l-lactide-co-glycolide) scaffolds with sodium hydroxide enhances osteoblastic differentiation and slows proliferation of mouse preosteoblast cells. Carpizo KH; Saran MJ; Huang W; Ishida K; Roostaeian J; Bischoff D; Huang CK; Rudkin GH; Yamaguchi DT; Miller TA Plast Reconstr Surg; 2008 Feb; 121(2):424-434. PubMed ID: 18300958 [TBL] [Abstract][Full Text] [Related]
3. Osteoblast-like cell adherance and migration through 3-dimensional porous polymer matrices. Attawia MA; Herbert KM; Laurencin CT Biochem Biophys Res Commun; 1995 Aug; 213(2):639-44. PubMed ID: 7646521 [TBL] [Abstract][Full Text] [Related]
5. Osteogenic activity of nanonized pearl powder/poly (lactide-co-glycolide) composite scaffolds for bone tissue engineering. Yang YL; Chang CH; Huang CC; Kao WM; Liu WC; Liu HW Biomed Mater Eng; 2014; 24(1):979-85. PubMed ID: 24211987 [TBL] [Abstract][Full Text] [Related]
6. Increased osteoblast functions among nanophase titania/poly(lactide-co-glycolide) composites of the highest nanometer surface roughness. Liu H; Slamovich EB; Webster TJ J Biomed Mater Res A; 2006 Sep; 78(4):798-807. PubMed ID: 16741979 [TBL] [Abstract][Full Text] [Related]
7. Scanning electron microscopic study of cell attachment to biodegradable polymer implants. Zislis T; Mark DE; Cerbas EL; Hollinger JO J Oral Implantol; 1989; 15(3):160-7. PubMed ID: 2561760 [TBL] [Abstract][Full Text] [Related]
8. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Kim SS; Sun Park M; Jeon O; Yong Choi C; Kim BS Biomaterials; 2006 Mar; 27(8):1399-409. PubMed ID: 16169074 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and characterization of poly(ethylene glycol)-poly(D,L-lactide-co-glycolide) poly(ethylene glycol) tri-block co-polymers modified with collagen: a model surface suitable for cell interaction. Porjazoska A; Yilmaz OK; Baysal K; Cvetkovska M; Sirvanci S; Ercan F; Baysal BM J Biomater Sci Polym Ed; 2006; 17(3):323-40. PubMed ID: 16689018 [TBL] [Abstract][Full Text] [Related]
10. Comparison of osteogenic potential between apatite-coated poly(lactide-co-glycolide)/hydroxyapatite particulates and Bio-Oss. Kim SS; Kim BS Dent Mater J; 2008 May; 27(3):368-75. PubMed ID: 18717164 [TBL] [Abstract][Full Text] [Related]
11. Evaluating the feasibility of utilizing the small molecule phenamil as a novel biofactor for bone regenerative engineering. Lo KW; Ulery BD; Kan HM; Ashe KM; Laurencin CT J Tissue Eng Regen Med; 2014 Sep; 8(9):728-36. PubMed ID: 22815259 [TBL] [Abstract][Full Text] [Related]
12. Improved Cell Adhesion and Osteogenesis of op-HA/PLGA Composite by Poly(dopamine)-Assisted Immobilization of Collagen Mimetic Peptide and Osteogenic Growth Peptide. Wang Z; Chen L; Wang Y; Chen X; Zhang P ACS Appl Mater Interfaces; 2016 Oct; 8(40):26559-26569. PubMed ID: 27649958 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Ishaug-Riley SL; Crane-Kruger GM; Yaszemski MJ; Mikos AG Biomaterials; 1998 Aug; 19(15):1405-12. PubMed ID: 9758040 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of the in vitro cytotoxicity and modulation of the inflammatory response by the bioresorbable polymers poly(D,L-lactide-co-glycolide) and poly(L-lactide-co-glycolide). Geddes L; Themistou E; Burrows JF; Buchanan FJ; Carson L Acta Biomater; 2021 Oct; 134():261-275. PubMed ID: 34329786 [TBL] [Abstract][Full Text] [Related]
15. BMP-2 immobilized PLGA/hydroxyapatite fibrous scaffold via polydopamine stimulates osteoblast growth. Zhao X; Han Y; Li J; Cai B; Gao H; Feng W; Li S; Liu J; Li D Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():658-666. PubMed ID: 28576035 [TBL] [Abstract][Full Text] [Related]
16. In vitro response of MC3T3-E1 pre-osteoblasts within three-dimensional apatite-coated PLGA scaffolds. Chou YF; Dunn JC; Wu BM J Biomed Mater Res B Appl Biomater; 2005 Oct; 75(1):81-90. PubMed ID: 16001421 [TBL] [Abstract][Full Text] [Related]
17. Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. Lao L; Wang Y; Zhu Y; Zhang Y; Gao C J Mater Sci Mater Med; 2011 Aug; 22(8):1873-84. PubMed ID: 21681656 [TBL] [Abstract][Full Text] [Related]
18. In situ forming lactic acid based orthopaedic biomaterials: influence of oligomer chemistry on osteoblast attachment and function. Burdick JA; Mason MN; Anseth KS J Biomater Sci Polym Ed; 2001; 12(11):1253-65. PubMed ID: 11853390 [TBL] [Abstract][Full Text] [Related]
19. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. Huang YX; Ren J; Chen C; Ren TB; Zhou XY J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961 [TBL] [Abstract][Full Text] [Related]
20. Sustained release of mitomycin-C from poly(DL-lactide) /poly(DL-lactide-co-glycolide) films. Gümüşderelioglu M; Deniz G J Biomater Sci Polym Ed; 2000; 11(10):1039-50. PubMed ID: 11211156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]