BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 8386672)

  • 1. Differential effects of physostigmine and 1,2,3,4-tetrahydro-9-aminoacridine on the beta-adrenoceptor transduction system.
    Vivas NM; Badia A; Màrmol F; Dierssen M
    Eur J Pharmacol; 1993 Mar; 245(1):9-13. PubMed ID: 8386672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Action on noradrenergic transmission of an anticholinesterase: 9-amino-1,2,3,4-tetrahydroacridine.
    Vivas NM; Màrmol F; Sallés J; Badia A; Dierssen M
    Neuropharmacology; 1995 Apr; 34(4):367-75. PubMed ID: 7566467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute effects of tetrahydroaminoacridine on beta-adrenoceptor-linked cyclic AMP accumulation in brain of young and middle-aged rats.
    Dierssen M; Màrmol F; Vivas NM; Clos MV; Gascón S; Badia A
    Neurosci Lett; 1991 Oct; 132(1):51-4. PubMed ID: 1724070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of tetrahydro-9-aminoacridine on cortical and hippocampal neurons in the rat: an in vivo and in vitro study.
    Dutar P; Bassant MH; Lamour Y
    Brain Res; 1990 Sep; 527(1):32-40. PubMed ID: 2282482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of in vivo microdialysis of 1,2,3,4-tetrahydro-9-aminoacridine (THA) on the extracellular concentration of acetylcholine in the striatum of anesthetized rats.
    Xiao WB; Nordberg A; Zhang X
    J Pharmacol Exp Ther; 1993 May; 265(2):759-64. PubMed ID: 8496822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-train administration of 9-amino-1,2,3,4-tetrahydroacridine enhances passive avoidance retention and decreases beta-adrenoceptor-linked cyclic AMP formation in middle-aged rats.
    Dierssen M; Màrmol F; Vivas NM; Clos MV; Badia A
    Brain Res; 1992 Jul; 586(1):117-20. PubMed ID: 1380875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blockade of isoproterenol-induced synaptic potentiation by tetra-9-aminoacridine in the rat amygdala.
    Wang SJ; Huang CC; Hsu KS; Tsai JJ; Huang CC; Gean PW
    Neurosci Lett; 1996 Aug; 214(2-3):87-90. PubMed ID: 8878090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetrahydroaminoacridine increases acetylcholine synthesis and glucose oxidation by mouse brain slices in vitro.
    Peterson C
    Neurosci Lett; 1990 Jul; 115(2-3):274-8. PubMed ID: 2234505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blockade of nicotinic responses by physostigmine, tacrine and other cholinesterase inhibitors in rat striatum.
    Clarke PB; Reuben M; el-Bizri H
    Br J Pharmacol; 1994 Mar; 111(3):695-702. PubMed ID: 8019748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory effect of 1,2,3,4-tetrahydro-9-aminoacridine on the depolarization-induced release of GABA from cerebral cortex.
    de Belleroche J; Gardiner IM
    Br J Pharmacol; 1988 Aug; 94(4):1017-9. PubMed ID: 3207970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro protection of acetylcholinesterase and butyrylcholinesterase by tetrahydroaminoacridine. Comparison with physostigmine.
    Galli A; Mori F; Gori I; Lucherini M
    Biochem Pharmacol; 1992 Jun; 43(11):2427-33. PubMed ID: 1610407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tetrahydroaminoacridine and physostigmine increase cerebral glucose utilization in specific cortical and subcortical regions in the rat.
    Bassant MH; Jazat F; Lamour Y
    J Cereb Blood Flow Metab; 1993 Sep; 13(5):855-64. PubMed ID: 8360291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetrahydroaminoacridine induces opposite changes in muscarinic and nicotinic receptors in rat brain.
    Nilsson-Håkansson L; Lai Z; Nordberg A
    Eur J Pharmacol; 1990 Sep; 186(2-3):301-5. PubMed ID: 2289530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of the actions of tetrahydro-9-aminoacridine and 9-aminoacridine on glutamatergic currents: concentration-jump studies in cultured rat hippocampal neurons.
    Costa AC; Albuquerque EX
    J Pharmacol Exp Ther; 1994 Jan; 268(1):503-14. PubMed ID: 7507997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel signal transduction pathway mediating endothelium-dependent beta-adrenoceptor vasorelaxation in rat thoracic aorta.
    Gray DW; Marshall I
    Br J Pharmacol; 1992 Nov; 107(3):684-90. PubMed ID: 1335334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiated cerebrovascular effects of physostigmine and tacrine in cortical areas deafferented from the nucleus basalis magnocellularis suggest involvement of basalocortical projections to microvessels.
    Peruzzi P; von Euw D; Lacombe P
    Ann N Y Acad Sci; 2000 Apr; 903():394-406. PubMed ID: 10818530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of velnacrine, tacrine and physostigmine on tetanic twitch responses at the rat neuromuscular junction.
    Bosch F; Morales M; Badia A; Baños JE
    Eur J Pharmacol; 1992 Nov; 222(1):163-6. PubMed ID: 1468493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic response to tacrine (THA) and physostigmine in the aged rat brain.
    Bassant MH; Jazat-Poindessous F; Lamour Y
    J Cereb Blood Flow Metab; 1995 Nov; 15(6):1093-102. PubMed ID: 7593342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of 9-amino-1,2,3,4-tetrahydroaminoacridine (THA) with human cortical nicotinic and muscarinic receptor binding in vitro.
    Perry EK; Smith CJ; Court JA; Bonham JR; Rodway M; Atack JR
    Neurosci Lett; 1988 Aug; 91(2):211-6. PubMed ID: 3185960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 9-Amino-1,2,3,4-tetrahydroacridine is a potent inhibitor of histamine N-methyltransferase.
    Nishibori M; Oishi R; Itoh Y; Saeki K
    Jpn J Pharmacol; 1991 Apr; 55(4):539-46. PubMed ID: 1886293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.