BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 8386773)

  • 21. RNase T1 mutant Glu46Gln binds the inhibitors 2'GMP and 2'AMP at the 3' subsite.
    Granzin J; Puras-Lutzke R; Landt O; Grunert HP; Heinemann U; Saenger W; Hahn U
    J Mol Biol; 1992 May; 225(2):533-42. PubMed ID: 1350642
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of ribonuclease H from Thermus thermophilus HB8 refined at 2.8 A resolution.
    Ishikawa K; Okumura M; Katayanagi K; Kimura S; Kanaya S; Nakamura H; Morikawa K
    J Mol Biol; 1993 Mar; 230(2):529-42. PubMed ID: 8385228
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular basis for nucleotide-binding specificity: role of the exocyclic amino group "N2" in recognition by a guanylyl-ribonuclease.
    Schrift GL; Waldron TT; Timmons MA; Ramaswamy S; Kearney WR; Murphy KP
    J Mol Biol; 2006 Jan; 355(1):72-84. PubMed ID: 16300786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structure of a glutamate/aspartate binding protein complexed with a glutamate molecule: structural basis of ligand specificity at atomic resolution.
    Hu Y; Fan CP; Fu G; Zhu D; Jin Q; Wang DC
    J Mol Biol; 2008 Sep; 382(1):99-111. PubMed ID: 18640128
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystallization of a complex between ribonuclease T1 and 2'-guanylic acid.
    Heinemann U; Wernitz M; Pähler A; Saenger W; Menke G; Rüterjans H
    Eur J Biochem; 1980 Aug; 109(1):109-14. PubMed ID: 6250834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structures of Escherichia coli dihydrofolate reductase complexed with 5-formyltetrahydrofolate (folinic acid) in two space groups: evidence for enolization of pteridine O4.
    Lee H; Reyes VM; Kraut J
    Biochemistry; 1996 Jun; 35(22):7012-20. PubMed ID: 8679526
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermodynamic analysis of the equilibrium, association and dissociation of 2'GMP and 3'GMP with ribonuclease T1 at pH 5.3.
    MacKerell AD; Rigler R; Hahn U; Saenger W
    Biochim Biophys Acta; 1991 Mar; 1073(2):357-65. PubMed ID: 1849008
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Ribonuclease Fl1 from Fusarium lateriticum. Isolation, substrate specificity and amino acid sequence].
    Bezborodova SI; Chepurnova NK; Shliapnikov SV
    Bioorg Khim; 1988 Jul; 14(7):893-904. PubMed ID: 3142486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular basis of the recognition process: hydrogen-bonding patterns in the guanine primary recognition site of ribonuclease T1.
    Gu J; Wang J; Leszczynski J
    J Phys Chem B; 2006 Jul; 110(27):13590-6. PubMed ID: 16821886
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure reveals two alternative conformations in the active site of ribonuclease Sa2.
    Sevcík J; Dauter Z; Wilson KS
    Acta Crystallogr D Biol Crystallogr; 2004 Jul; 60(Pt 7):1198-204. PubMed ID: 15213380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystallographic study of mechanism of ribonuclease T1-catalysed specific RNA hydrolysis.
    Heinemann U; Saenger W
    J Biomol Struct Dyn; 1983 Oct; 1(2):523-38. PubMed ID: 6086061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The primary structure of ribonuclease F1 from Fusarium moniliforme.
    Hirabayashi J; Yoshida H
    Biochem Int; 1983 Aug; 7(2):255-62. PubMed ID: 6433932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. X-ray structure of gelonin at 1.8 A resolution.
    Hosur MV; Nair B; Satyamurthy P; Misquith S; Surolia A; Kannan KK
    J Mol Biol; 1995 Jul; 250(3):368-80. PubMed ID: 7608981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure of RNase T1(Y45W) complexed with 3'AMP and GflpA.
    Gohda K; Itoh T; Hiramatsu Y; Tomita K; Nishikawa S; Uesugi S; Morioka H; Ohtsuka E; Ikehara M; Hakoshima T
    J Biochem; 1993 Dec; 114(6):842-8. PubMed ID: 8138541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of a catalytic-site mutant alpha-amylase from Bacillus subtilis complexed with maltopentaose.
    Fujimoto Z; Takase K; Doui N; Momma M; Matsumoto T; Mizuno H
    J Mol Biol; 1998 Mar; 277(2):393-407. PubMed ID: 9514750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissection of the structural and functional role of a conserved hydration site in RNase T1.
    Langhorst U; Loris R; Denisov VP; Doumen J; Roose P; Maes D; Halle B; Steyaert J
    Protein Sci; 1999 Apr; 8(4):722-30. PubMed ID: 10211818
    [TBL] [Abstract][Full Text] [Related]  

  • 37. His92Ala mutation in ribonuclease T1 induces segmental flexibility. An X-ray study.
    Koellner G; Choe HW; Heinemann U; Grunert HP; Zouni A; Hahn U; Saenger W
    J Mol Biol; 1992 Apr; 224(3):701-13. PubMed ID: 1314902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Raman spectroscopic study on the structure of ribonuclease F1 and the binding mode of inhibitor.
    Takeuchi H; Harada I; Yoshida H
    Biochim Biophys Acta; 1991 Jul; 1078(3):307-12. PubMed ID: 1650248
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computer modelling studies on the mechanism of action of ribonuclease T1.
    Balaji PV; Saenger W; Rao VS
    J Biomol Struct Dyn; 1991 Oct; 9(2):215-31. PubMed ID: 1741959
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNase T1 variant RV cleaves single-stranded RNA after purines due to specific recognition by the Asn46 side chain amide.
    Czaja R; Struhalla M; Höschler K; Saenger W; Sträter N; Hahn U
    Biochemistry; 2004 Mar; 43(10):2854-62. PubMed ID: 15005620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.