BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 8386803)

  • 1. Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin.
    Kawamura S
    Nature; 1993 Apr; 362(6423):855-7. PubMed ID: 8386803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recoverin has S-modulin activity in frog rods.
    Kawamura S; Hisatomi O; Kayada S; Tokunaga F; Kuo CH
    J Biol Chem; 1993 Jul; 268(20):14579-82. PubMed ID: 8392055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of carboxyl-terminal charges on S-modulin membrane affinity and inhibition of rhodopsin phosphorylation.
    Matsuda S; Hisatomi O; Tokunaga F
    Biochemistry; 1999 Jan; 38(4):1310-5. PubMed ID: 9930992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-dependent regulation of cyclic GMP phosphodiesterase by a protein from frog retinal rods.
    Kawamura S; Murakami M
    Nature; 1991 Jan; 349(6308):420-3. PubMed ID: 1846944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of S-modulin, a calcium-dependent regulator on cGMP phosphodiesterase in frog rod photoreceptors.
    Kawamura S; Takamatsu K; Kitamura K
    Biochem Biophys Res Commun; 1992 Jul; 186(1):411-7. PubMed ID: 1321610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanism of S-modulin action: binding target and effect of ATP.
    Sato N; Kawamura S
    J Biochem; 1997 Dec; 122(6):1139-45. PubMed ID: 9498557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional expression and characterization of frog photoreceptor-specific calcium-binding proteins.
    Hisatomi O; Ishino T; Matsuda S; Yamaguchi K; Kobayashi Y; Kawamura S; Tokunaga F
    Biochem Biophys Res Commun; 1997 May; 234(1):173-7. PubMed ID: 9168984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-sensitivity modulating protein in frog rods.
    Kawamura S
    Photochem Photobiol; 1992 Dec; 56(6):1173-80. PubMed ID: 1337215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium-dependent regulation of rhodopsin phosphorylation.
    Kawamura S
    Novartis Found Symp; 1999; 224():208-18; discussion 218-24. PubMed ID: 10614053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of rhodopsin phosphorylation by non-myristoylated recombinant recoverin.
    Kawamura S; Cox JA; Nef P
    Biochem Biophys Res Commun; 1994 Aug; 203(1):121-7. PubMed ID: 8074645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S-modulin.
    Kawamura S; Tachibanaki S
    Adv Exp Med Biol; 2002; 514():61-8. PubMed ID: 12596915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium controls light-triggered formation of catalytically active rhodopsin.
    Lagnado L; Baylor DA
    Nature; 1994 Jan; 367(6460):273-7. PubMed ID: 8121492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recoverin mediates the calcium effect upon rhodopsin phosphorylation and cGMP hydrolysis in bovine retina rod cells.
    Gorodovikova EN; Gimelbrant AA; Senin II; Philippov PP
    FEBS Lett; 1994 Aug; 349(2):187-90. PubMed ID: 8050563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A GTP-protein activator of phosphodiesterase which forms in response to bleached rhodopsin.
    Uchida S; Wheeler GL; Yamazaki A; Bitensky MW
    J Cyclic Nucleotide Res; 1981; 7(2):95-104. PubMed ID: 6278004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acceleration of key reactions as a strategy to elucidate the rate-limiting chemistry underlying phototransduction inactivation.
    Kennedy MJ; Sowa ME; Wensel TG; Hurley JB
    Invest Ophthalmol Vis Sci; 2003 Mar; 44(3):1016-22. PubMed ID: 12601023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of the phototransduction cascade to dim light.
    Langlois G; Chen CK; Palczewski K; Hurley JB; Vuong TM
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4677-82. PubMed ID: 8643463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of photoreceptor cell death in cancer-associated retinopathy.
    Maeda T; Maeda A; Maruyama I; Ogawa KI; Kuroki Y; Sahara H; Sato N; Ohguro H
    Invest Ophthalmol Vis Sci; 2001 Mar; 42(3):705-12. PubMed ID: 11222531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of rhodopsin kinase by recoverin. Further evidence for a negative feedback system in phototransduction.
    Klenchin VA; Calvert PD; Bownds MD
    J Biol Chem; 1995 Jul; 270(27):16147-52. PubMed ID: 7608179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal dysfunction in cancer-associated retinopathy is improved by Ca(2+) antagonist administration and dark adaptation.
    Ohguro H; Ogawa K; Maeda T; Maruyama I; Maeda A; Takano Y; Nakazawa M
    Invest Ophthalmol Vis Sci; 2001 Oct; 42(11):2589-95. PubMed ID: 11581204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autophosphorylation and ADP regulate the Ca2+-dependent interaction of recoverin with rhodopsin kinase.
    Satpaev DK; Chen CK; Scotti A; Simon MI; Hurley JB; Slepak VZ
    Biochemistry; 1998 Jul; 37(28):10256-62. PubMed ID: 9665733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.