These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 838687)

  • 1. Generation of a transmembrane electric potential during respiration by Azotobacter vinelandii membrand vesicles.
    Bhattacharyya P; Shapiro SA; Barnes EM
    J Bacteriol; 1977 Feb; 129(2):756-62. PubMed ID: 838687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiration-coupled calcium transport by membrane vesicles from Azotobacter vinelandii.
    Barnes EM; Roberts RR; Bhattacharyya P
    Membr Biochem; 1978; 1(1-2):73-88. PubMed ID: 116111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP-dependent calcium transport in isolated membrane vesicles from Azotobacter vinelandii.
    Bhattacharyya P; Barnes EM
    J Biol Chem; 1976 Sep; 251(18):56-14-9. PubMed ID: 9392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton-coupled sodium uptake by membrane vesicles from Azotobacter vinelandii.
    Bhattacharyya P; Barnes EM
    J Biol Chem; 1978 Jun; 253(11):3848-51. PubMed ID: 25893
    [No Abstract]   [Full Text] [Related]  

  • 5. Characteristics of energy-linked proton translocation in liposome reconstituted bovine cytochrome bc1 complex. Influence of the protonmotive force on the H+/e- stoichiometry.
    Cocco T; Lorusso M; Di Paola M; Minuto M; Papa S
    Eur J Biochem; 1992 Oct; 209(1):475-81. PubMed ID: 1327781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation of lipid-soluble ions and of rubidium as indicators of the electrical potential in membrane vesicles of Escherichia coli.
    Altendorf K; Hirata H; Harold FM
    J Biol Chem; 1975 Feb; 250(4):1405-12. PubMed ID: 1089658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of membrane vesicles with inverted topology by osmotic lysis of Azotobacter vinelandii spheroplasts.
    Barnes EM; Bhattacharyya P
    J Supramol Struct; 1977; 6(3):333-44. PubMed ID: 145514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation.
    Bakker EP
    Biochim Biophys Acta; 1982 Sep; 681(3):474-83. PubMed ID: 6812627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. K+-dependent Na+ transport driven by respiration in Escherichia coli cells and membrane vesicles.
    Verkhovskaya ML; Verkhovsky MI; Wikström M
    Biochim Biophys Acta; 1996 Mar; 1273(3):207-16. PubMed ID: 8616158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of protonic potential by the bd-type quinol oxidase of Azotobacter vinelandii.
    Bertsova YV; Bogachev AV; Skulachev VP
    FEBS Lett; 1997 Sep; 414(2):369-72. PubMed ID: 9315721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of monovalent ions on the transport of noradrenaline across the plasma membrane of neuronal cells (PC-12 cells).
    Harder R; Bönisch H
    J Neurochem; 1985 Oct; 45(4):1154-62. PubMed ID: 4031884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of Na+ electrochemical potential by the Na+-motive NADH oxidase and Na+/H+ antiport system of a moderately halophilic Vibrio costicola.
    Udagawa T; Unemoto T; Tokuda H
    J Biol Chem; 1986 Feb; 261(6):2616-22. PubMed ID: 3005258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly permeant anions and glucose uptake as an alternative for quantitative generation and estimation of membrane potential differences in brush-border membrane vesicles.
    Berteloot A
    Biochim Biophys Acta; 1986 May; 857(2):180-8. PubMed ID: 3707949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative phosphorylation in Azotobacter vinelandii. Energy-linked pH changes and fluorescence changes of atebrin and 1-anilinonaphthalene-8-sulphonate.
    Bening GJ; Eilermann LJ
    Biochim Biophys Acta; 1973 Feb; 292(2):402-12. PubMed ID: 4634032
    [No Abstract]   [Full Text] [Related]  

  • 15. The electrochemical potential across mycoplasmal membranes.
    Schiefer HG; Schummer U
    Rev Infect Dis; 1982; 4 Suppl():S65-70. PubMed ID: 7123058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delta pH, H+ diffusion potentials, and Mg2+ ATPase in neurosecretory vesicles isolated from bovine neurohypophyses.
    Russell JT
    J Biol Chem; 1984 Aug; 259(15):9496-507. PubMed ID: 6146615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrogenicity of phosphate transport by renal brush-border membranes.
    Béliveau R; Ibnoul-Khatib H
    Biochem J; 1988 Jun; 252(3):801-6. PubMed ID: 3421922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH gradient effects on chloride transport across basolateral membrane vesicles from guinea-pig jejunum.
    Touzani K; Alvarado F; Vasseur M
    J Physiol; 1997 Apr; 500 ( Pt 2)(Pt 2):385-400. PubMed ID: 9147326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of membrane potential in Bacillus subtilis: a comparison of lipophilic cations, rubidium ion, and a cyanine dye as probes.
    Zaritsky A; Kihara M; Macnab RM
    J Membr Biol; 1981; 63(3):215-31. PubMed ID: 6796695
    [No Abstract]   [Full Text] [Related]  

  • 20. L-malate transport and proton symport in vesicles prepared from Pseudomonas putida.
    Agbanyo FR; Moses G; Taylor NF
    Biochem Cell Biol; 1986 Nov; 64(11):1190-4. PubMed ID: 3030368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.