BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 838726)

  • 21. Primary structure of the 5 S subunit of transcarboxylase as deduced from the genomic DNA sequence.
    Thornton CG; Kumar GK; Shenoy BC; Haase FC; Phillips NF; Park VM; Magner WJ; Hejlik DP; Wood HG; Samols D
    FEBS Lett; 1993 Sep; 330(2):191-6. PubMed ID: 8365490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preliminary crystallographic data and quaternary structural implications of the central subunit of the multi-subunit complex transcarboxylase.
    Skrzypczak-Jankun E; Tulinsky A; Fillers JP; Kumar KG; Wood HG
    J Mol Biol; 1986 Apr; 188(3):495-8. PubMed ID: 3735431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amino acid sequence of the biotinyl subunit from transcarboxylase.
    Maloy WL; Bowien BU; Zwolinski GK; Kumar KG; Wood HG; Ericsson LH; Walsh KA
    J Biol Chem; 1979 Nov; 254(22):11615-22. PubMed ID: 40985
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The importance of methionine residues for the catalysis of the biotin enzyme, transcarboxylase. Analysis by site-directed mutagenesis.
    Shenoy BC; Xie Y; Park VL; Kumar GK; Beegen H; Wood HG; Samols D
    J Biol Chem; 1992 Sep; 267(26):18407-12. PubMed ID: 1526981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Primary structure of the monomer of the 12S subunit of transcarboxylase as deduced from DNA and characterization of the product expressed in Escherichia coli.
    Thornton CG; Kumar GK; Haase FC; Phillips NF; Woo SB; Park VM; Magner WJ; Shenoy BC; Wood HG; Samols D
    J Bacteriol; 1993 Sep; 175(17):5301-8. PubMed ID: 8366018
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The nonbiotinylated form of the 1.3 s subunit of transcarboxylase binds to avidin (monomeric)-agarose: purification and separation from the biotinylated 1.3 S subunit.
    Shenoy BC; Magner WJ; Kumar GK; Phillips NF; Haase FC; Samols D
    Protein Expr Purif; 1993 Feb; 4(1):85-94. PubMed ID: 8425112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Involvement and identification of a tryptophanyl residue at the pyruvate binding site of transcarboxylase.
    Kumar GK; Haase FC; Phillips NF; Wood HG
    Biochemistry; 1988 Aug; 27(16):5978-83. PubMed ID: 3191103
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of the binding specificity of the 12S subunit of the transcarboxylase by saturation transfer difference NMR.
    Peikert C; Seeger K; Bhat RK; Berger S
    Org Biomol Chem; 2004 Jun; 2(12):1777-81. PubMed ID: 15188046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcarboxylase: role of biotin, metals, and subunits in the reaction and its quaternary structure.
    Wood HG; Zwolinski GK
    CRC Crit Rev Biochem; 1976 Jun; 4(1):47-122. PubMed ID: 782789
    [No Abstract]   [Full Text] [Related]  

  • 30. Absence of observable biotin-protein interactions in the 1.3S subunit of transcarboxylase: an NMR study.
    Reddy DV; Shenoy BC; Carey PR; Sönnichsen FD
    Biochemistry; 1997 Dec; 36(48):14676-82. PubMed ID: 9398186
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High resolution solution structure of the 1.3S subunit of transcarboxylase from Propionibacterium shermanii.
    Reddy DV; Shenoy BC; Carey PR; Sönnichsen FD
    Biochemistry; 2000 Mar; 39(10):2509-16. PubMed ID: 10704200
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The amino acid sequences of the biotinyl subunit essential for the association of transcarboxylase.
    Kumar GK; Bahler CR; Wood HG; Merrifield RB
    J Biol Chem; 1982 Nov; 257(22):13828-34. PubMed ID: 7142178
    [No Abstract]   [Full Text] [Related]  

  • 33. Evolutionary conservation among biotin enzymes.
    Samols D; Thornton CG; Murtif VL; Kumar GK; Haase FC; Wood HG
    J Biol Chem; 1988 May; 263(14):6461-4. PubMed ID: 2896195
    [No Abstract]   [Full Text] [Related]  

  • 34. New and easy strategy for cloning, expression, purification, and characterization of the 5S subunit of transcarboxylase from Propionibacterium f. shermanii.
    Kumar Bhat R; Berger S
    Prep Biochem Biotechnol; 2007; 37(1):13-26. PubMed ID: 17134979
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcarboxylase. XII. Identification of the metal-containing subunits of transcarboxylase and stability of the binding.
    Ahmad F; Lygre DG; Jacobson BE; Wood HG
    J Biol Chem; 1972 Oct; 247(19):6299-305. PubMed ID: 4631318
    [No Abstract]   [Full Text] [Related]  

  • 36. Subunit interactions of transcarboxylase as studied by circular dichroism.
    Hennessey JP; Johnson WC; Bahler C; Wood HG
    Biochemistry; 1982 Feb; 21(4):642-6. PubMed ID: 7074029
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcarboxylase: its quaternary structure and the role of the biotinyl subunit in the assembly of the enzyme and in catalysis.
    Wood HG; Kumar GK
    Ann N Y Acad Sci; 1985; 447():1-22. PubMed ID: 3893281
    [No Abstract]   [Full Text] [Related]  

  • 38. Substrate binding induces a cooperative conformational change in the 12S subunit of transcarboxylase: Raman crystallographic evidence.
    Zheng X; Rivera-Hainaj RE; Zheng Y; Pusztai-Carey M; Hall PR; Yee VC; Carey PR
    Biochemistry; 2002 Sep; 41(35):10741-6. PubMed ID: 12196011
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heavy riboflavin synthase from Bacillus subtilis. Quaternary structure and reaggregation.
    Bacher A; Ludwig HC; Schnepple H; Ben-Shaul Y
    J Mol Biol; 1986 Jan; 187(1):75-86. PubMed ID: 3083108
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intermolecular tritium transfer in the transcarboxylase reaction.
    Rose IA; O'Connell EL; Solomon F
    J Biol Chem; 1976 Feb; 251(3):902-4. PubMed ID: 1249062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.