BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 8387385)

  • 41. Calmodulin-dependent cyclic nucleotide phosphodiesterase (PDE1).
    Kakkar R; Raju RV; Sharma RK
    Cell Mol Life Sci; 1999 Jul; 55(8-9):1164-86. PubMed ID: 10442095
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inhibition of human lung cyclic GMP and cyclic AMP phosphodiesterases by certain nucleosides, nucleotides, and pharmacological phosphodiesterase inhibitors.
    Glass WF; Moore JB
    Biochem Pharmacol; 1979 Apr; 28(7):1107-12. PubMed ID: 87197
    [No Abstract]   [Full Text] [Related]  

  • 43. Characterization of the cyclic nucleotide phosphodiesterase isoenzymes present in rat epididymal fat cells.
    Schmitz-Peiffer C; Reeves ML; Denton RM
    Cell Signal; 1992 Jan; 4(1):37-49. PubMed ID: 1571203
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of 3-isobutyl-1-methylxanthine and zaprinast on non-adrenergic non-cholinergic relaxation in the rat gastric fundus.
    Barbier AJ; Lefebvre RA
    Eur J Pharmacol; 1992 Jan; 210(3):315-23. PubMed ID: 1377130
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of membrane-bound cyclic nucleotide phosphodiesterases from bovine aortic smooth muscle.
    Ivorra MD; Le Bec A; Lugnier C
    J Cardiovasc Pharmacol; 1992 Apr; 19(4):532-40. PubMed ID: 1380595
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Studies on the inhibition of phosphodiesterase-catalyzed cyclic AMP and cyclic GMP breakdown and relaxation of canine tracheal smooth muscle.
    Polson JB; Krzanowski JJ; Fitzpatrick DF; Szentivanyi A
    Biochem Pharmacol; 1978 Jan; 27(2):254-6. PubMed ID: 203292
    [No Abstract]   [Full Text] [Related]  

  • 47. Inhibitors of cyclic nucleotide phosphodiesterases as therapeutic agents.
    Murray KJ; England PJ
    Biochem Soc Trans; 1992 May; 20(2):460-4. PubMed ID: 1327922
    [No Abstract]   [Full Text] [Related]  

  • 48. Zardaverine as a selective inhibitor of phosphodiesterase isozymes.
    Schudt C; Winder S; Müller B; Ukena D
    Biochem Pharmacol; 1991 Jun; 42(1):153-62. PubMed ID: 1648920
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of [N-(2-oxo-3,5,7-cycloheptatrien-1-yl)] aminooxoacetic acid ethyl ester (AY-25,674) on cyclic 3',5'-nucleotide formation and phosphodiesterase activity.
    Pugsley TA; Lippmann W
    Experientia; 1979 Jan; 35(1):88-90. PubMed ID: 217716
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inhibition cyclic nucleotide phosphodiesterase by FPL 55712, an SRS-A antagonist.
    Chasin M; Scott C
    Biochem Pharmacol; 1978; 27(16):2065-7. PubMed ID: 214090
    [No Abstract]   [Full Text] [Related]  

  • 51. Dihydro- and tetrahydroisoquinolines as inhibitors of cyclic nucleotide phosphodiesterases from dog heart. Structure-activity relationships.
    Van Inwegen RG; Salaman P; St Georgiev V; Weinryb I
    Biochem Pharmacol; 1979 Apr; 28(8):1307-12. PubMed ID: 87199
    [No Abstract]   [Full Text] [Related]  

  • 52. Inhibition of low Km cyclic GMP phosphodiesterases and potentiation of guanylate cyclase activators by cicletanine.
    Silver PJ; Buchholz A; Dundore RL; Harris AL; Pagani ED
    J Cardiovasc Pharmacol; 1990 Sep; 16(3):501-5. PubMed ID: 1700224
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of carbenoxolone on phosphodiesterase and prostaglandin synthetase activities.
    Vapaatalo H; Lindén IB; Metsä-Ketelä T; Kangasaho M; Laustiola K
    Experientia; 1978 Mar; 34(3):384-5. PubMed ID: 204509
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibition of granulocyte cAMP-phosphodiesterase by rolipram in vivo is not sufficient to protect the canine myocardium from reperfusion injury.
    Simpson PJ; Schelm JA; Smallwood JK; Clay MP; Lindstrom TD
    J Cardiovasc Pharmacol; 1992 Jun; 19(6):987-95. PubMed ID: 1376823
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interaction of the catalytic subunit of protein kinase A with the lung type V cyclic GMP phosphodiesterase: modulation of non-catalytic binding sites.
    Burns F; Pyne NJ
    Biochem Biophys Res Commun; 1992 Dec; 189(3):1389-96. PubMed ID: 1336365
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of amrinone and enoximone on the subclasses of cyclic AMP phosphodiesterase from human heart and kidney.
    Masuoka H; Ito M; Nakano T; Naka M; Tanaka T
    J Cardiovasc Pharmacol; 1990 Feb; 15(2):302-7. PubMed ID: 1689427
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterisation of cyclic nucleotide phosphodiesterases from rat mesenteric artery.
    Komas N; Lugnier C; Andriantsitohaina R; Stoclet JC
    Eur J Pharmacol; 1991 Sep; 208(1):85-7. PubMed ID: 1657622
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Novel compounds possessing potent cAMP and cGMP phosphodiesterase inhibitory activity. Synthesis and cardiovascular effects of a series of imidazo[1,2-a]quinoxalinones and imidazo[1,5-a]quinoxalinones and their aza analogues.
    Davey DD; Erhardt PW; Cantor EH; Greenberg SS; Ingebretsen WR; Wiggins J
    J Med Chem; 1991 Sep; 34(9):2671-7. PubMed ID: 1654425
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biochemical and electrical aspects of the tracheal relaxant action of AH 21-132.
    Small RC; Berry JL; Boyle JP; Chapman ID; Elliott KR; Foster RW; Watt AJ
    Eur J Pharmacol; 1991 Jan; 192(3):417-26. PubMed ID: 1647318
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Differentiation of intestinal smooth muscle relaxation caused by drugs that inhibit phosphodiesterase.
    Pöch G; Umfahrer W
    Naunyn Schmiedebergs Arch Pharmacol; 1976 Jun; 293(3):257-68. PubMed ID: 183155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.