These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 8387678)
1. Induction of sister chromatid exchange as a function of charged-particle linear energy transfer. Geard CR Radiat Res; 1993 May; 134(2):187-92. PubMed ID: 8387678 [TBL] [Abstract][Full Text] [Related]
2. Low doses of alpha particles do not induce sister chromatid exchanges in bystander Chinese hamster cells defective in homologous recombination. Nagasawa H; Wilson PF; Chen DJ; Thompson LH; Bedford JS; Little JB DNA Repair (Amst); 2008 Mar; 7(3):515-22. PubMed ID: 18182331 [TBL] [Abstract][Full Text] [Related]
3. The biological effectiveness of radon-progeny alpha particles. IV. Morphological transformation of Syrian hamster embryo cells at low doses. Martin SG; Miller RC; Geard CR; Hall EJ Radiat Res; 1995 Apr; 142(1):70-7. PubMed ID: 7899561 [TBL] [Abstract][Full Text] [Related]
4. Charged particle cytogenetics: effects of LET, fluence, and particle separation on chromosome aberrations. Geard CR Radiat Res Suppl; 1985; 8():S112-21. PubMed ID: 3003782 [TBL] [Abstract][Full Text] [Related]
5. Alpha-particle-induced sister chromatid exchange in normal human lung fibroblasts: evidence for an extranuclear target. Deshpande A; Goodwin EH; Bailey SM; Marrone BL; Lehnert BE Radiat Res; 1996 Mar; 145(3):260-7. PubMed ID: 8927692 [TBL] [Abstract][Full Text] [Related]
6. Chromosomal damage and repair in G1-phase Chinese hamster ovary cells exposed to charged-particle beams. Goodwin EH; Blakely EA; Tobias CA Radiat Res; 1994 Jun; 138(3):343-51. PubMed ID: 8184008 [TBL] [Abstract][Full Text] [Related]
7. Genetic and cytogenetic markers of exposure to high-linear energy transfer radiation. Schwartz JL; Hsie AW Radiat Res; 1997 Nov; 148(5 Suppl):S87-92. PubMed ID: 9355861 [TBL] [Abstract][Full Text] [Related]
8. Induction and disappearance of G2 chromatid breaks in lymphocytes after low doses of low-LET gamma-rays and high-LET fast neutrons. Vral A; Thierens H; Baeyens A; De Ridder L Int J Radiat Biol; 2002 Apr; 78(4):249-57. PubMed ID: 12020436 [TBL] [Abstract][Full Text] [Related]
9. The sequential irradiation of mammalian cells with X rays and charged particles of high LET. Bird RP; Zaider M; Rossi HH; Hall EJ; Marino SA; Rohrig N Radiat Res; 1983 Mar; 93(3):444-52. PubMed ID: 6856752 [TBL] [Abstract][Full Text] [Related]
10. Radiobiology of alpha particles. IV. Cell inactivation by alpha particles of energies 0.4-3.5 MeV. Raju MR; Eisen Y; Carpenter S; Jarrett K; Harvey WF Radiat Res; 1993 Mar; 133(3):289-96. PubMed ID: 8451379 [TBL] [Abstract][Full Text] [Related]
11. Physical and biological studies with protons and HZE particles in a NASA supported research center in radiation health. Chatterjee A; Borak TH Phys Med; 2001; 17 Suppl 1():59-66. PubMed ID: 11770539 [TBL] [Abstract][Full Text] [Related]
12. Cellular and molecular analysis of mutagenesis induced by charged particles of defined linear energy transfer. Zhu LX; Waldren CA; Vannias D; Hei TK Radiat Res; 1996 Mar; 145(3):251-9. PubMed ID: 8927691 [TBL] [Abstract][Full Text] [Related]
13. Initial damage in human interphase chromosomes from alpha particles with linear energy transfers relevant to radon exposure. Loucas BD; Geard CR Radiat Res; 1994 Jul; 139(1):9-14. PubMed ID: 8016313 [TBL] [Abstract][Full Text] [Related]
14. Extracellular factor(s) following exposure to alpha particles can cause sister chromatid exchanges in normal human cells. Lehnert BE; Goodwin EH; Deshpande A Cancer Res; 1997 Jun; 57(11):2164-71. PubMed ID: 9187116 [TBL] [Abstract][Full Text] [Related]
15. The inverse dose-rate effect for oncogenic transformation by charged particles is dependent on linear energy transfer. Miller RC; Randers-Pehrson G; Hieber L; Marino SA; Richards M; Hall EJ Radiat Res; 1993 Mar; 133(3):360-4. PubMed ID: 8451387 [TBL] [Abstract][Full Text] [Related]
16. Rejoining and misrejoining of radiation-induced chromatin breaks. IV. Charged particles. Durante M; Furusawa Y; George K; Gialanella G; Greco O; Grossi G; Matsufuji N; Pugliese M; Yang TC Radiat Res; 1998 May; 149(5):446-54. PubMed ID: 9588355 [TBL] [Abstract][Full Text] [Related]
17. The influence of track structure on the understanding of relative biological effectiveness for induction of chromosomal exchanges in human lymphocytes. Moiseenko VV; Edwards AA; Nikjoo H; Prestwich WV Radiat Res; 1997 Feb; 147(2):208-14. PubMed ID: 9008213 [TBL] [Abstract][Full Text] [Related]
18. DNA DSB induced in human cells by charged particles and gamma rays: experimental results and theoretical approaches. Campa A; Ballarini F; Belli M; Cherubini R; Dini V; Esposito G; Friedland W; Gerardi S; Molinelli S; Ottolenghi A; Paretzke H; Simone G; Tabocchini MA Int J Radiat Biol; 2005 Nov; 81(11):841-54. PubMed ID: 16484153 [TBL] [Abstract][Full Text] [Related]
19. [Double-stranded DNA breaks and inactivation of mammalian cells in relation to the LET of the radiation--comparison between experiment and theory]. Abel' Kh; Ertsgreber G; Apkhorn K; Kampf G; Tol'kendorf E Radiobiologiia; 1984; 24(3):300-4. PubMed ID: 6739731 [TBL] [Abstract][Full Text] [Related]
20. Rad51C-deficient CL-V4B cells exhibit normal levels of mitomycin C-induced SCEs but reduced levels of UVC-induced SCEs. Wojcik A; Stoilov L; Szumiel I; Legerski R; Obe G Biochem Biophys Res Commun; 2005 Jan; 326(4):805-10. PubMed ID: 15607741 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]