BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 8387792)

  • 1. Application of three-dimensional molecular hydrophobicity potential to the analysis of spatial organization of membrane domains in proteins. III. Modeling of intramembrane moiety of Na+, K(+)-ATPase.
    Efremov RG; Gulyaev DI; Modyanov NN
    J Protein Chem; 1993 Apr; 12(2):143-52. PubMed ID: 8387792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of three-dimensional molecular hydrophobicity potential to the analysis of spatial organization of membrane domains in proteins: I. Hydrophobic properties of transmembrane segments of Na+, K(+)-ATPase.
    Efremov RG; Gulyaev DI; Vergoten G; Modyanov NN
    J Protein Chem; 1992 Dec; 11(6):665-75. PubMed ID: 1334655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of three-dimensional molecular hydrophobicity potential to the analysis of spatial organization of membrane protein domains. II. Optimization of hydrophobic contacts in transmembrane hairpin structures of Na+, K(+)-ATPase.
    Efremov RG; Gulyaev DI; Modyanov NN
    J Protein Chem; 1992 Dec; 11(6):699-708. PubMed ID: 1334656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiated analysis of the secondary structure of hydrophilic and hydrophobic regions in alpha- and beta-subunits of Na+,K+-ATPase by Raman spectroscopy.
    Ovchinnikov YuA ; Arystarkhova EA; Arzamazova NM; Dzhandzhugazyan KN; Efremov RG; Nabiev IR; Modyanov NN
    FEBS Lett; 1988 Jan; 227(2):235-9. PubMed ID: 2828120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Packing of the transmembrane helices of Na,K-ATPase: direct contact between beta-subunit and H8 segment of alpha-subunit revealed by oxidative cross-linking.
    Ivanov A; Zhao H; Modyanov NN
    Biochemistry; 2000 Aug; 39(32):9778-85. PubMed ID: 10933795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caveolin-Na/K-ATPase interactions: role of transmembrane topology in non-genomic steroid signal transduction.
    Morrill GA; Kostellow AB; Askari A
    Steroids; 2012 Sep; 77(11):1160-8. PubMed ID: 22579740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of the α-Subunit of Na/K-ATPase from Paramecium to Homo sapiens: Invariance of Transmembrane Helix Topology.
    Morrill GA; Kostellow AB; Liu L; Gupta RK; Askari A
    J Mol Evol; 2016 May; 82(4-5):183-98. PubMed ID: 26961431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural aspects of the gastric H,K ATPase.
    Shin JM; Besancon M; Bamberg K; Sachs G
    Ann N Y Acad Sci; 1997 Nov; 834():65-76. PubMed ID: 9405786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying the lipid-protein interface and transmembrane structural transitions of the Torpedo Na,K-ATPase using hydrophobic photoreactive probes.
    Blanton MP; McCardy EA
    Biochemistry; 2000 Nov; 39(44):13534-44. PubMed ID: 11063590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane organization of the Na+,K(+)-ATPase molecule.
    Modyanov N; Lutsenko S; Chertova E; Efremov R; Gulyaev D
    Acta Physiol Scand Suppl; 1992; 607():49-58. PubMed ID: 1333160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progesterone modulation of transmembrane helix-helix interactions between the alpha-subunit of Na/K-ATPase and phospholipid N-methyltransferase in the oocyte plasma membrane.
    Morrill GA; Kostellow AB; Askari A
    BMC Struct Biol; 2010 May; 10():12. PubMed ID: 20500835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional structure of renal Na,K-ATPase from cryo-electron microscopy of two-dimensional crystals.
    Hebert H; Purhonen P; Vorum H; Thomsen K; Maunsbach AB
    J Mol Biol; 2001 Nov; 314(3):479-94. PubMed ID: 11846561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmembrane organization of the Na,K-ATPase determined by epitope addition.
    Canfield VA; Levenson R
    Biochemistry; 1993 Dec; 32(50):13782-6. PubMed ID: 7505614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Access of extracellular cations to their binding sites in Na,K-ATPase: role of the second extracellular loop of the alpha subunit.
    Capendeguy O; Chodanowski P; Michielin O; Horisberger JD
    J Gen Physiol; 2006 Mar; 127(3):341-52. PubMed ID: 16505152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Na,K-ATPase.
    Skou JC; Esmann M
    J Bioenerg Biomembr; 1992 Jun; 24(3):249-61. PubMed ID: 1328174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proximity of transmembrane segments M3 and M1 of the alpha subunit of Na+,K+-ATPase revealed by specific oxidative cleavage mediated by a complex of Cu2+ ions and 4,7-diphenyl-1,10-phenanthroline.
    Tal DM; Capasso JM; Munson K; Karlish SJ
    Biochemistry; 2001 Oct; 40(42):12505-14. PubMed ID: 11601974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arginine substitution of a cysteine in transmembrane helix M8 converts Na+,K+-ATPase to an electroneutral pump similar to H+,K+-ATPase.
    Holm R; Khandelwal J; Einholm AP; Andersen JP; Artigas P; Vilsen B
    Proc Natl Acad Sci U S A; 2017 Jan; 114(2):316-321. PubMed ID: 28028214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homology modeling of the cation binding sites of Na+K+-ATPase.
    Ogawa H; Toyoshima C
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):15977-82. PubMed ID: 12461183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Residues within transmembrane domains 4 and 6 of the Na,K-ATPase alpha subunit are important for Na+ selectivity.
    Sánchez G; Blanco G
    Biochemistry; 2004 Jul; 43(28):9061-74. PubMed ID: 15248763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association of renal Na,K-ATPase alpha-subunit with the beta- and gamma-subunits based on cryoelectron microscopy.
    Purhonen P; Thomsen K; Maunsbach AB; Hebert H
    J Membr Biol; 2006; 214(3):139-46. PubMed ID: 17557166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.