BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 8387991)

  • 1. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri.
    Molenaar D; Bosscher JS; ten Brink B; Driessen AJ; Konings WN
    J Bacteriol; 1993 May; 175(10):2864-70. PubMed ID: 8387991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Malolactic fermentation: electrogenic malate uptake and malate/lactate antiport generate metabolic energy.
    Poolman B; Molenaar D; Smid EJ; Ubbink T; Abee T; Renault PP; Konings WN
    J Bacteriol; 1991 Oct; 173(19):6030-7. PubMed ID: 1917837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ADI pathway and histidine decarboxylation are reciprocally regulated in Lactobacillus hilgardii ISE 5211: proteomic evidence.
    Lamberti C; Purrotti M; Mazzoli R; Fattori P; Barello C; Coïsson JD; Giunta C; Pessione E
    Amino Acids; 2011 Jul; 41(2):517-27. PubMed ID: 20976511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uniport of anionic citrate and proton consumption in citrate metabolism generates a proton motive force in Leuconostoc oenos.
    Ramos A; Poolman B; Santos H; Lolkema JS; Konings WN
    J Bacteriol; 1994 Aug; 176(16):4899-905. PubMed ID: 8051003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of a proton motive force by the anaerobic oxalate-degrading bacterium Oxalobacter formigenes.
    Kuhner CH; Hartman PA; Allison MJ
    Appl Environ Microbiol; 1996 Jul; 62(7):2494-500. PubMed ID: 8779588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ClC transporter activity modulates histidine catabolism in Lactobacillus reuteri by altering intracellular pH and membrane potential.
    Hall AE; Engevik MA; Oezguen N; Haag A; Versalovic J
    Microb Cell Fact; 2019 Dec; 18(1):212. PubMed ID: 31830990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved acid stress survival of Lactococcus lactis expressing the histidine decarboxylation pathway of Streptococcus thermophilus CHCC1524.
    Trip H; Mulder NL; Lolkema JS
    J Biol Chem; 2012 Mar; 287(14):11195-204. PubMed ID: 22351775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histidine decarboxylaseless mutants of Lactobacillus 30a: isolation and growth properties.
    Recsei PA; Snell EE
    J Bacteriol; 1972 Oct; 112(1):624-6. PubMed ID: 5079079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic properties of electrogenic Na+/H+ antiport in membrane vesicles from an alkalophilic Bacillus sp.
    Kitada M; Horikoshi K
    J Bacteriol; 1992 Sep; 174(18):5936-40. PubMed ID: 1325968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of transport processes in survival of lactic acid bacteria. Energy transduction and multidrug resistance.
    Konings WN; Lolkema JS; Bolhuis H; van Veen HW; Poolman B; Driessen AJ
    Antonie Van Leeuwenhoek; 1997 Feb; 71(1-2):117-28. PubMed ID: 9049023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histamine production in Lactobacillus vaginalis improves cell survival at low pH by counteracting the acidification of the cytosol.
    Diaz M; Del Rio B; Ladero V; Redruello B; Fernández M; Martin MC; Alvarez MA
    Int J Food Microbiol; 2020 May; 321():108548. PubMed ID: 32050139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual role for the tyrosine decarboxylation pathway in Enterococcus faecium E17: response to an acid challenge and generation of a proton motive force.
    Pereira CI; Matos D; San Romão MV; Crespo MT
    Appl Environ Microbiol; 2009 Jan; 75(2):345-52. PubMed ID: 19011061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exchange of aspartate and alanine. Mechanism for development of a proton-motive force in bacteria.
    Abe K; Hayashi H; Maloney PC
    J Biol Chem; 1996 Feb; 271(6):3079-84. PubMed ID: 8621704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of biogenic amine accumulation into chromaffin granules and ghosts based on coupling to the electrochemical proton gradient.
    Johnson RG; Carty S; Scarpa A
    Fed Proc; 1982 Sep; 41(11):2746-54. PubMed ID: 7117549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the mechanism of sodium ion translocation by methylmalonyl-CoA decarboxylase from Veillonella alcalescens.
    Hilpert W; Dimroth P
    Eur J Biochem; 1991 Jan; 195(1):79-86. PubMed ID: 1991479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphopyridoxal complexes with histamine and histidine. (4) The kinetics of complex formation between histidine and pyridoxal 5' -phosphate in the presence of bacterial histidine decarboxylase.
    Kierska D; Maśliński C
    Agents Actions; 1975 Dec; 5(5):471-5. PubMed ID: 176880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of enzyme-mediated reactions. Part 13. Stereochemical course of the formation of histamine by decarboxylation of (2S)-histidine with enzymes from Clostridium welchii and Lactobacillus 30a.
    Battersby AR; Nicoletti M; Staunton J; Vleggaar R
    J Chem Soc Perkin 1; 1980; 1():43-51. PubMed ID: 6244319
    [No Abstract]   [Full Text] [Related]  

  • 19. Oxalate:formate exchange. The basis for energy coupling in Oxalobacter.
    Anantharam V; Allison MJ; Maloney PC
    J Biol Chem; 1989 May; 264(13):7244-50. PubMed ID: 2708365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of maltose uptake and glucose excretion in Lactobacillus sanfrancisco.
    Neubauer H; Glaasker E; Hammes WP; Poolman B; Konings WN
    J Bacteriol; 1994 May; 176(10):3007-12. PubMed ID: 8188601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.