BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 8388043)

  • 1. Changes in serotonin-induced potentials during spinal cord development.
    Ziskind-Conhaim L; Seebach BS; Gao BX
    J Neurophysiol; 1993 Apr; 69(4):1338-49. PubMed ID: 8388043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental changes in the effects of serotonin and N-methyl-D-aspartate on intrinsic membrane properties of embryonic chick motoneurons.
    Muramoto T; Mendelson B; Phelan KD; Garcia-Rill E; Skinner RD; Puskarich-May C
    Neuroscience; 1996 Nov; 75(2):607-18. PubMed ID: 8931023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of 5-HT1C/2 receptors depresses polysynaptic reflexes and excitatory amino acid-induced motoneuron responses in frog spinal cord.
    Holohean AM; Hackman JC; Shope SB; Davidoff RA
    Brain Res; 1992 May; 579(1):8-16. PubMed ID: 1320445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GABA-receptor-independent dorsal root afferents depolarization in the neonatal rat spinal cord.
    Kremer E; Lev-Tov A
    J Neurophysiol; 1998 May; 79(5):2581-92. PubMed ID: 9582230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole cell recordings of lumbar motoneurons during locomotor-like activity in the in vitro neonatal rat spinal cord.
    Hochman S; Schmidt BJ
    J Neurophysiol; 1998 Feb; 79(2):743-52. PubMed ID: 9463437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early development of glycine- and GABA-mediated synapses in rat spinal cord.
    Wu WL; Ziskind-Conhaim L; Sweet MA
    J Neurosci; 1992 Oct; 12(10):3935-45. PubMed ID: 1403091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological and physiological studies of development of the monosynaptic reflex pathway in the rat lumbar spinal cord.
    Kudo N; Yamada T
    J Physiol; 1987 Aug; 389():441-59. PubMed ID: 2824763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serotonin1A facilitation of frog motoneuron responses to afferent stimuli and to N-methyl-D-aspartate.
    Holohean AM; Hackman JC; Shope SB; Davidoff RA
    Neuroscience; 1992; 48(2):469-77. PubMed ID: 1351269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of chemosensitivity in serotonin-deficient spinal cords of rat embryos.
    Gao BX; Ziskind-Conhaim L
    Dev Biol; 1993 Jul; 158(1):79-89. PubMed ID: 8330675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous rhythmic bursts induced by pharmacological block of inhibition in lumbar motoneurons of the neonatal rat spinal cord.
    Bracci E; Ballerini L; Nistri A
    J Neurophysiol; 1996 Feb; 75(2):640-7. PubMed ID: 8714641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilitation of spinal motoneurone excitability by 5-hydroxytryptamine and noradrenaline.
    White SR; Neuman RS
    Brain Res; 1980 Apr; 188(1):119-27. PubMed ID: 7370747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plateau potentials in sacrocaudal motoneurons of chronic spinal rats, recorded in vitro.
    Bennett DJ; Li Y; Siu M
    J Neurophysiol; 2001 Oct; 86(4):1955-71. PubMed ID: 11600653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental changes in serotonergic receptor-mediated modulation of embryonic chick motoneurons in vitro.
    Hayashi T; Mendelson B; Phelan KD; Skinner RD; Garcia-Rill E
    Brain Res Dev Brain Res; 1997 Aug; 102(1):21-33. PubMed ID: 9298231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of serotonin on the background activity of neurons in the isolated spinal cord semisegment of the rat].
    Khasabov SG; Tamarova ZA
    Neirofiziologiia; 1989; 21(3):335-43. PubMed ID: 2770915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Action of 5-hydroxytryptamine on isolated spinal cord of bullfrogs.
    Shirasawa Y; Koketsu K
    Jpn J Pharmacol; 1977 Feb; 27(1):23-9. PubMed ID: 194076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angiotensin AT(1)-receptors depolarize neonatal spinal motoneurons and other ventral horn neurons via two different conductances.
    Oz M; Renaud LP
    J Neurophysiol; 2002 Nov; 88(5):2857-63. PubMed ID: 12424318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of serotonin on isolated cells with the various functionality from the lamprey spinal cord].
    Batueva IV; Buchanan JT; Veselkin NP; Suderevskaia EI; Tsvetkov EA
    Ross Fiziol Zh Im I M Sechenova; 2000 Jul; 86(7):835-53. PubMed ID: 11011369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NT-3 evokes an LTP-like facilitation of AMPA/kainate receptor-mediated synaptic transmission in the neonatal rat spinal cord.
    Arvanov VL; Seebach BS; Mendell LM
    J Neurophysiol; 2000 Aug; 84(2):752-8. PubMed ID: 10938302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective depression of excitatory amino acid induced depolarizations by magnesium ions in isolated spinal cord preparations.
    Ault B; Evans RH; Francis AA; Oakes DJ; Watkins JC
    J Physiol; 1980 Oct; 307():413-28. PubMed ID: 6259339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serotonergic projections to lumbar levels and its plasticity following spinal cord injury.
    Xia Y; Chen D; Xia H; Liao Z; Tang W; Yan Y
    Neurosci Lett; 2017 May; 649():70-77. PubMed ID: 28396282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.