These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8388267)

  • 1. Intermolecular protein interactions in solutions of bovine lens beta L-crystallin. Results from 1/T1 nuclear magnetic relaxation dispersion profiles.
    Koenig SH; Brown RD; Kenworthy AK; Magid AD; Ugolini R
    Biophys J; 1993 Apr; 64(4):1178-86. PubMed ID: 8388267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermolecular protein interactions in solutions of calf lens alpha-crystallin. Results from 1/T1 nuclear magnetic relaxation dispersion profiles.
    Koenig SH; Brown RD; Spiller M; Chakrabarti B; Pande A
    Biophys J; 1992 Mar; 61(3):776-85. PubMed ID: 1504248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligomerization and conformation change in solutions of calf lens gamma II-crystallin. Results from 1/T1 nuclear magnetic relaxation dispersion profiles.
    Koenig SH; Beaulieu CF; Brown RD; Spiller M
    Biophys J; 1990 Mar; 57(3):461-9. PubMed ID: 2306495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relaxometry of lens homogenates. II. Temperature dependence and comparison with other proteins.
    Beaulieu CF; Brown RD; Clark JI; Spiller M; Koenig SH
    Magn Reson Med; 1989 Jun; 10(3):362-72. PubMed ID: 2733592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of eye lens transparency: light scattering by concentrated solutions of bovine alpha-crystallin proteins.
    Xia JZ; Wang Q; Tatarkova S; Aerts T; Clauwaert J
    Biophys J; 1996 Nov; 71(5):2815-22. PubMed ID: 8913618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relaxometry of calf lens homogenates, including cross-relaxation by crystallin NH groups.
    Beaulieu CF; Clark JI; Brown RD; Spiller M; Koenig SH
    Magn Reson Med; 1988 Sep; 8(1):45-57. PubMed ID: 3173068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloid osmotic pressure of steer alpha- and beta-crystallins: possible functional roles for lens crystallin distribution and structural diversity.
    Kenworthy AK; Magid AD; Oliver TN; McIntosh TJ
    Exp Eye Res; 1994 Jul; 59(1):11-30. PubMed ID: 7835391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 13C-NMR off-resonance rotating frame spin-lattice relaxation studies of bovine lens gamma-crystallin self association: effect of 'macromolecular crowding'.
    Stevens A; Wang SX; Caines GH; Schleich T
    Biochim Biophys Acta; 1995 Jan; 1246(1):82-90. PubMed ID: 7811735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory of relaxation of mobile water protons induced by protein NH moieties, with application to rat heart muscle and calf lens homogenates.
    Koenig SH
    Biophys J; 1988 Jan; 53(1):91-6. PubMed ID: 2829984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermolecular interaction of lens crystallins: from rotationally mobile to immobile states at high protein concentrations.
    Liang JJ; Chakrabarti B
    Biochem Biophys Res Commun; 1998 May; 246(2):441-5. PubMed ID: 9610380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Off-resonance rotating frame spin-lattice NMR relaxation studies of phosphorus metabolite rotational diffusion in bovine lens homogenates.
    Caines GH; Schleich T; Morgan CF; Farnsworth PN
    Biochemistry; 1990 Aug; 29(33):7547-57. PubMed ID: 2271517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classes of hydration sites at protein-water interfaces: the source of contrast in magnetic resonance imaging.
    Koenig SH
    Biophys J; 1995 Aug; 69(2):593-603. PubMed ID: 8527674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colloid osmotic pressure of steer crystallins: implications for the origin of the refractive index gradient and transparency of the lens.
    Magid AD; Kenworthy AK; McIntosh TJ
    Exp Eye Res; 1992 Oct; 55(4):615-27. PubMed ID: 1483507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular order within the lens: 1H NMR spectroscopic evidence for specific crystallin-crystallin interactions.
    Cooper PG; Aquilina JA; Truscott RJ; Carver JA
    Exp Eye Res; 1994 Nov; 59(5):607-16. PubMed ID: 9492762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enthalpy and entropy of hydration of bovine crystallins.
    Zhao T; Bettelheim FA
    J Biol Chem; 1995 Oct; 270(42):24961-4. PubMed ID: 7559623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic stability of bovine alpha-crystallin in its interactions with other bovine crystallins.
    Bettelheim FA; Chen A
    Int J Biol Macromol; 1998; 22(3-4):247-52. PubMed ID: 9650079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution conformation of bovine lens alpha- and betaB2-crystallin terminal extensions.
    Le Breton ER; Carver JA
    Int J Pept Protein Res; 1996; 47(1-2):9-19. PubMed ID: 8907494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light scattering by bovine alpha-crystallin proteins in solution: hydrodynamic structure and interparticle interaction.
    Xia JZ; Aerts T; Donceel K; Clauwaert J
    Biophys J; 1994 Mar; 66(3 Pt 1):861-72. PubMed ID: 8011918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium-23 and potassium-39 nuclear magnetic resonance relaxation in eye lens. Examples of quadrupole ion magnetic relaxation in a crowded protein environment.
    Stevens A; Paschalis P; Schleich T
    Biophys J; 1992 May; 61(5):1061-75. PubMed ID: 1600073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alpha-crystallin exists in a non-spherical form. A study on the rotational properties of native and reconstituted alpha-crystallin.
    van Haeringen B; Eden D; van den Bogaerde MR; van Grondelle R; Bloemendal M
    Eur J Biochem; 1992 Nov; 210(1):211-6. PubMed ID: 1446673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.