These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 8388379)
1. Ca(2+)-dependent kinase and phosphatase control inositol 1,4,5-trisphosphate-mediated Ca2+ release. Modification by agonist stimulation. Zhang BX; Zhao H; Muallem S J Biol Chem; 1993 May; 268(15):10997-1001. PubMed ID: 8388379 [TBL] [Abstract][Full Text] [Related]
2. Intracellular mechanisms of cytoplasmic Ca2+ oscillation in rat megakaryocyte. Uneyama H; Uneyama C; Akaike N J Biol Chem; 1993 Jan; 268(1):168-74. PubMed ID: 7677993 [TBL] [Abstract][Full Text] [Related]
3. Depletion-activated calcium current is inhibited by protein kinase in RBL-2H3 cells. Parekh AB; Penner R Proc Natl Acad Sci U S A; 1995 Aug; 92(17):7907-11. PubMed ID: 7644512 [TBL] [Abstract][Full Text] [Related]
4. Compartmentalization of Ca2+ signaling and Ca2+ pools in pancreatic acini. Implications for the quantal behavior of Ca2+ release. Tortorici G; Zhang BX; Xu X; Muallem S J Biol Chem; 1994 Nov; 269(47):29621-8. PubMed ID: 7961950 [TBL] [Abstract][Full Text] [Related]
5. ATP causes release of intracellular Ca2+ via the phospholipase C beta/IP3 pathway in astrocytes from the dorsal spinal cord. Salter MW; Hicks JL J Neurosci; 1995 Apr; 15(4):2961-71. PubMed ID: 7722640 [TBL] [Abstract][Full Text] [Related]
6. Reversible phosphorylation as a controlling factor for sustaining calcium oscillations in HeLa cells: Involvement of calmodulin-dependent kinase II and a calyculin A-inhibitable phosphatase. Zhu DM; Tekle E; Chock PB; Huang CY Biochemistry; 1996 Jun; 35(22):7214-23. PubMed ID: 8679550 [TBL] [Abstract][Full Text] [Related]
7. Expression of Drosophila trpl cRNA in Xenopus laevis oocytes leads to the appearance of a Ca2+ channel activated by Ca2+ and calmodulin, and by guanosine 5'[gamma-thio]triphosphate. Lan L; Bawden MJ; Auld AM; Barritt GJ Biochem J; 1996 Jun; 316 ( Pt 3)(Pt 3):793-803. PubMed ID: 8670154 [TBL] [Abstract][Full Text] [Related]
8. The bell-shaped Ca2+ dependence of the inositol 1,4, 5-trisphosphate-induced Ca2+ release is modulated by Ca2+/calmodulin. Missiaen L; Parys JB; Weidema AF; Sipma H; Vanlingen S; De Smet P; Callewaert G; De Smedt H J Biol Chem; 1999 May; 274(20):13748-51. PubMed ID: 10318777 [TBL] [Abstract][Full Text] [Related]
9. Agonist-mediated Ca2+ release in permeabilized UMR-106-01 cells. Transport properties and generation of inositol 1,4,5-trisphosphate. Zhao H; Khademazad M; Muallem S J Biol Chem; 1990 Sep; 265(25):14822-7. PubMed ID: 2203762 [TBL] [Abstract][Full Text] [Related]
10. Regulation of the inositol 1,4,5-trisphosphate-activated Ca2+ channel by activation of G proteins. Xu X; Zeng W; Muallem S J Biol Chem; 1996 May; 271(20):11737-44. PubMed ID: 8662624 [TBL] [Abstract][Full Text] [Related]
11. Quantal responses to inositol 1,4,5-trisphosphate are not a consequence of Ca2+ regulation of inositol 1,4,5-trisphosphate receptors. Patel S; Taylor CW Biochem J; 1995 Dec; 312 ( Pt 3)(Pt 3):789-94. PubMed ID: 8554521 [TBL] [Abstract][Full Text] [Related]
12. Phosphorylation and dephosphorylation modulate a Ca(2+)-activated K+ channel in rat peptidergic nerve terminals. Bielefeldt K; Jackson MB J Physiol; 1994 Mar; 475(2):241-54. PubMed ID: 8021831 [TBL] [Abstract][Full Text] [Related]
13. GTP and Ca2+ modulate the inositol 1,4,5-trisphosphate-dependent Ca2+ release in streptolysin O-permeabilized bovine adrenal chromaffin cells. Föhr KJ; Ahnert-Hilger G; Stecher B; Scott J; Gratzl M J Neurochem; 1991 Feb; 56(2):665-70. PubMed ID: 1988562 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of muscarinic-stimulated polyphosphoinositide hydrolysis and Ca2+ mobilization in cat iris sphincter smooth muscle cells by cAMP-elevating agents. Ding KH; Husain S; Akhtar RA; Isales CM; Abdel-Latif AA Cell Signal; 1997 Sep; 9(6):411-21. PubMed ID: 9376222 [TBL] [Abstract][Full Text] [Related]
15. Calcium release from intracellular stores evoked by extracellular ATP in a Xenopus renal epithelial cell line. Mori M; Hosomi H; Nishizaki T; Kawahara K; Okada Y J Physiol; 1997 Jul; 502 ( Pt 2)(Pt 2):365-73. PubMed ID: 9263916 [TBL] [Abstract][Full Text] [Related]
16. Differential inhibitory effects of serine/threonine phosphatase inhibitors and a calmodulin antagonist on phosphoinositol/calcium- and cyclic adenosine monophosphate-mediated pancreatic amylase secretion. Meyer-Alber A; Höcker M; Fetz I; Fornefeld H; Waschulewski IH; Fölsch UR; Schmidt WE Scand J Gastroenterol; 1995 Apr; 30(4):384-91. PubMed ID: 7541915 [TBL] [Abstract][Full Text] [Related]
17. Sulfhydryl reagents and cAMP-dependent kinase increase the sensitivity of the inositol 1,4,5-trisphosphate receptor in hepatocytes. Bird GS; Burgess GM; Putney JW J Biol Chem; 1993 Aug; 268(24):17917-23. PubMed ID: 8394353 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of agonist-stimulated inositol 1,4,5-trisphosphate production and calcium signaling by the myosin light chain kinase inhibitor, wortmannin. Nakanishi S; Catt KJ; Balla T J Biol Chem; 1994 Mar; 269(9):6528-35. PubMed ID: 8120005 [TBL] [Abstract][Full Text] [Related]
19. Inositol trisphosphate-induced calcium release in the generation of calcium oscillations in bovine eggs. Fissore RA; Pinto-Correia C; Robl JM Biol Reprod; 1995 Oct; 53(4):766-74. PubMed ID: 8547468 [TBL] [Abstract][Full Text] [Related]
20. Calcium released from intracellular stores inhibits GABAA-mediated currents in ganglion cells of the turtle retina. Akopian A; Gabriel R; Witkovsky P J Neurophysiol; 1998 Sep; 80(3):1105-15. PubMed ID: 9744925 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]