These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8389136)

  • 41. The intracellular localization of glycollate oxidoreductase in Euglena gracilis.
    Lord JM; Merrett MJ
    Biochem J; 1971 Sep; 124(2):275-81. PubMed ID: 5003470
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of dietary thiamin on phenobarbital induction of rat hepatic enzymes responsible for metabolizing drugs and carcinogens.
    Wade AE; Evans JS; Holmes D; Baker MT
    Drug Nutr Interact; 1983; 2(2):117-30. PubMed ID: 6432511
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The kinetic characterization and X-ray structure of a putative benzoylformate decarboxylase from M. smegmatis highlights the difficulties in the functional annotation of ThDP-dependent enzymes.
    Andrews FH; Horton JD; Shin D; Yoon HJ; Logsdon MG; Malik AM; Rogers MP; Kneen MM; Suh SW; McLeish MJ
    Biochim Biophys Acta; 2015 Aug; 1854(8):1001-9. PubMed ID: 25936776
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thiamin nutrition and catalysis-induced instability of thiamin diphosphate.
    McCourt JA; Nixon PF; Duggleby RG
    Br J Nutr; 2006 Oct; 96(4):636-8. PubMed ID: 17010220
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Euglena gracilis ascorbate peroxidase forms an intramolecular dimeric structure: its unique molecular characterization.
    Ishikawa T; Tajima N; Nishikawa H; Gao Y; Rapolu M; Shibata H; Sawa Y; Shigeoka S
    Biochem J; 2010 Feb; 426(2):125-34. PubMed ID: 20015051
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Vitamin B1].
    Inui H; Nakano Y
    Nihon Rinsho; 1999 Oct; 57(10):2187-92. PubMed ID: 10540860
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural and kinetic analysis of catalysis by a thiamin diphosphate-dependent enzyme, benzoylformate decarboxylase.
    Polovnikova ES; McLeish MJ; Sergienko EA; Burgner JT; Anderson NL; Bera AK; Jordan F; Kenyon GL; Hasson MS
    Biochemistry; 2003 Feb; 42(7):1820-30. PubMed ID: 12590569
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reactivity at the substrate activation site of yeast pyruvate decarboxylase: inhibition by distortion of domain interactions.
    Baburina I; Dikdan G; Guo F; Tous GI; Root B; Jordan F
    Biochemistry; 1998 Feb; 37(5):1245-55. PubMed ID: 9477950
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of thiamine deprivation on thiamine metabolism in mice.
    Trebukhina RV; Ostrovsky YM; Petushok VG; Velichko MG; Tumanov VN
    J Nutr; 1981 Mar; 111(3):505-13. PubMed ID: 6110711
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of ascorbic acid & thiamine on pyruvate decarboxylase activity of Lactobacillus fermenti-36.
    Sabri MI; Rao VK
    Indian J Biochem; 1967 Mar; 4(1):40-3. PubMed ID: 4228669
    [No Abstract]   [Full Text] [Related]  

  • 51. Dietary thiamin level influences levels of its diphosphate form and thiamin-dependent enzymic activities of rat liver.
    Blair PV; Kobayashi R; Edwards HM; Shay NF; Baker DH; Harris RA
    J Nutr; 1999 Mar; 129(3):641-8. PubMed ID: 10082768
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates.
    Schütz A; Golbik R; König S; Hübner G; Tittmann K
    Biochemistry; 2005 Apr; 44(16):6164-79. PubMed ID: 15835904
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Suppression of the phytoene synthase gene (EgcrtB) alters carotenoid content and intracellular structure of Euglena gracilis.
    Kato S; Soshino M; Takaichi S; Ishikawa T; Nagata N; Asahina M; Shinomura T
    BMC Plant Biol; 2017 Jul; 17(1):125. PubMed ID: 28716091
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A possible ribosomal-directed regulatory system in Euglena gracilis. Carbon dioxide fixation.
    Wolfovitch R; Perl M
    Biochem J; 1972 Dec; 130(3):819-23. PubMed ID: 4198359
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The crystal structure of benzoylformate decarboxylase at 1.6 A resolution: diversity of catalytic residues in thiamin diphosphate-dependent enzymes.
    Hasson MS; Muscate A; McLeish MJ; Polovnikova LS; Gerlt JA; Kenyon GL; Petsko GA; Ringe D
    Biochemistry; 1998 Jul; 37(28):9918-30. PubMed ID: 9665697
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Elucidation of the chemistry of enzyme-bound thiamin diphosphate prior to substrate binding: defining internal equilibria among tautomeric and ionization states.
    Nemeria N; Korotchkina L; McLeish MJ; Kenyon GL; Patel MS; Jordan F
    Biochemistry; 2007 Sep; 46(37):10739-44. PubMed ID: 17715948
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The mechanism of ACTH stimulation of adrenal ornithine decarboxylase activity.
    Levine JH; Nicholson WE; Peytremann A; Orth DN
    Endocrinology; 1975 Jul; 97(1):136-44. PubMed ID: 166825
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Induction of fumarase in resting Euglena.
    Horrum MA; Schwartzbach SD
    Biochim Biophys Acta; 1982 Feb; 714(3):407-14. PubMed ID: 6800407
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Substrate specificity in thiamin diphosphate-dependent decarboxylases.
    Andrews FH; McLeish MJ
    Bioorg Chem; 2012 Aug; 43():26-36. PubMed ID: 22245019
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thiamin diphosphate in biological chemistry: applications in biocatalysis, coenzyme analogues as mechanistic probes and natural derivatives of thiamin.
    Tittmann K
    FEBS J; 2009 Jun; 276(11):2893. PubMed ID: 19490095
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.