BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 8389361)

  • 21. Proteolytic cleavage of microtubule-associated proteins by retroviral proteinases.
    Wallin M; Deinum J; Goobar L; Danielson UH
    J Gen Virol; 1990 Sep; 71 ( Pt 9)():1985-91. PubMed ID: 2212989
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Continuous spectrophotometric assay for retroviral proteases of HIV-1 and AMV.
    Nashed NT; Louis JM; Sayer JM; Wondrak EM; Mora PT; Oroszlan S; Jerina DM
    Biochem Biophys Res Commun; 1989 Sep; 163(2):1079-85. PubMed ID: 2551268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Drug-resistant HIV-1 proteases identify enzyme residues important for substrate selection and catalytic rate.
    Ridky TW; Kikonyogo A; Leis J; Gulnik S; Copeland T; Erickson J; Wlodawer A; Kurinov I; Harrison RW; Weber IT
    Biochemistry; 1998 Sep; 37(39):13835-45. PubMed ID: 9753473
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of the crystal structures and intersubunit interactions of human immunodeficiency and Rous sarcoma virus proteases.
    Weber IT
    J Biol Chem; 1990 Jun; 265(18):10492-6. PubMed ID: 2162350
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular model of equine infectious anemia virus proteinase and kinetic measurements for peptide substrates with single amino acid substitutions.
    Weber IT; Tözsér J; Wu J; Friedman D; Oroszlan S
    Biochemistry; 1993 Apr; 32(13):3354-62. PubMed ID: 8384880
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular modeling of the HIV-1 protease and its substrate binding site.
    Weber IT; Miller M; Jaskólski M; Leis J; Skalka AM; Wlodawer A
    Science; 1989 Feb; 243(4893):928-31. PubMed ID: 2537531
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Purification and biochemical characterization of recombinant simian immunodeficiency virus protease and comparison to human immunodeficiency virus type 1 protease.
    Grant SK; Deckman IC; Minnich MD; Culp J; Franklin S; Dreyer GB; Tomaszek TA; Debouck C; Meek TD
    Biochemistry; 1991 Aug; 30(34):8424-34. PubMed ID: 1883829
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease.
    Wlodawer A; Miller M; Jaskólski M; Sathyanarayana BK; Baldwin E; Weber IT; Selk LM; Clawson L; Schneider J; Kent SB
    Science; 1989 Aug; 245(4918):616-21. PubMed ID: 2548279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Specificity of the HIV-1 Protease on Substrates Representing the Cleavage Site in the Proximal Zinc-Finger of HIV-1 Nucleocapsid Protein.
    Mótyán JA; Miczi M; Oroszlan S; Tőzsér J
    Viruses; 2021 Jun; 13(6):. PubMed ID: 34201134
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and biochemical studies of retroviral proteases.
    Wlodawer A; Gustchina A
    Biochim Biophys Acta; 2000 Mar; 1477(1-2):16-34. PubMed ID: 10708846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutational analysis of the substrate binding pocket of murine leukemia virus protease and comparison with human immunodeficiency virus proteases.
    Menéndez-Arias L; Weber IT; Oroszlan S
    J Biol Chem; 1995 Dec; 270(49):29162-8. PubMed ID: 7493942
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amino acid preferences of retroviral proteases for amino-terminal positions in a type 1 cleavage site.
    Eizert H; Bander P; Bagossi P; Sperka T; Miklóssy G; Boross P; Weber IT; Tözsér J
    J Virol; 2008 Oct; 82(20):10111-7. PubMed ID: 18701588
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 15gag proteinase of myeloblastosis-associated virus: specificity studies with substrate-based inhibitors.
    Pavlícková L; Stys D; Soucek M; Urban J; Hrusková O; Sedlácek J; Strop P
    Arch Biochem Biophys; 1992 Nov; 298(2):753-6. PubMed ID: 1417001
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Processing, purification, and kinetic characterization of the Gag-Pol encoded retroviral proteinase of myeloblastosis associated virus expressed in E. coli.
    Brynda J; Fábry M; Tichý PJ; Horejsí M; Sedlácek J
    Adv Exp Med Biol; 1995; 362():485-8. PubMed ID: 8540362
    [No Abstract]   [Full Text] [Related]  

  • 35. Evaluation of homology modeling of HIV protease.
    Weber IT
    Proteins; 1990; 7(2):172-84. PubMed ID: 2158092
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An active-site mutation in the human immunodeficiency virus type 1 proteinase (PR) causes reduced PR activity and loss of PR-mediated cytotoxicity without apparent effect on virus maturation and infectivity.
    Konvalinka J; Litterst MA; Welker R; Kottler H; Rippmann F; Heuser AM; Kräusslich HG
    J Virol; 1995 Nov; 69(11):7180-6. PubMed ID: 7474139
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural basis for distinctions between substrate and inhibitor specificities for feline immunodeficiency virus and human immunodeficiency virus proteases.
    Lin YC; Beck Z; Morris GM; Olson AJ; Elder JH
    J Virol; 2003 Jun; 77(12):6589-600. PubMed ID: 12767979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural basis for specificity of retroviral proteases.
    Wu J; Adomat JM; Ridky TW; Louis JM; Leis J; Harrison RW; Weber IT
    Biochemistry; 1998 Mar; 37(13):4518-26. PubMed ID: 9521772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rous sarcoma virus integrase protein: mapping functions for catalysis and substrate binding.
    Bushman FD; Wang B
    J Virol; 1994 Apr; 68(4):2215-23. PubMed ID: 8139006
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of autoproteolysis of the HIV-1 and HIV-2 proteases with engineered amino acid substitutions.
    Rosé JR; Salto R; Craik CS
    J Biol Chem; 1993 Jun; 268(16):11939-45. PubMed ID: 8505318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.