BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 8389593)

  • 1. Activation of enzymes by calmodulins containing intramolecular cross-links.
    Persechini A; Jarrett HW; Kosk-Kosicka D; Krinks MH; Lee HG
    Biochim Biophys Acta; 1993 Jun; 1163(3):309-14. PubMed ID: 8389593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of deletions in the central helix of calmodulin on enzyme activation and peptide binding.
    Persechini A; Blumenthal DK; Jarrett HW; Klee CB; Hardy DO; Kretsinger RH
    J Biol Chem; 1989 May; 264(14):8052-8. PubMed ID: 2542260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of three enzymes to oleic acid, trypsin, and calmodulin chemically modified with a reactive phenothiazine.
    Jarrett HW
    J Biol Chem; 1986 Apr; 261(11):4967-72. PubMed ID: 3007484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An enzymatic assay for calmodulins based on plant NAD kinase activity.
    Harmon AC; Jarrett HW; Cormier MJ
    Anal Biochem; 1984 Aug; 141(1):168-78. PubMed ID: 6093619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calmodulin-binding proteins also have a calmodulin-like binding site within their structure. The flip-flop model.
    Jarrett HW; Madhavan R
    J Biol Chem; 1991 Jan; 266(1):362-71. PubMed ID: 1845967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases.
    Cunningham KW; Fink GR
    J Cell Biol; 1994 Feb; 124(3):351-63. PubMed ID: 7507493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trimethyllysine and protein function. Effect of methylation and mutagenesis of lysine 115 of calmodulin on NAD kinase activation.
    Roberts DM; Rowe PM; Siegel FL; Lukas TJ; Watterson DM
    J Biol Chem; 1986 Feb; 261(4):1491-4. PubMed ID: 3003072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of calcineurin-calmodulin interaction: probing the role of arginine residues using peptidylarginine deiminase.
    Imparl JM; Senshu T; Graves DJ
    Arch Biochem Biophys; 1995 Apr; 318(2):370-7. PubMed ID: 7733665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The central helix of calmodulin functions as a flexible tether.
    Persechini A; Kretsinger RH
    J Biol Chem; 1988 Sep; 263(25):12175-8. PubMed ID: 3137220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The activity of calmodulin is altered by phosphorylation: modulation of calmodulin function by the site of phosphate incorporation.
    Sacks DB; Mazus B; Joyal JL
    Biochem J; 1995 Nov; 312 ( Pt 1)(Pt 1):197-204. PubMed ID: 7492313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specificity of Tetrahymena calmodulin in activation of calmodulin-regulated enzymes.
    Kudo S; Muto Y; Nagao S; Naka M; Hidaka H; Sano M; Nozawa Y
    FEBS Lett; 1982 Nov; 149(2):271-6. PubMed ID: 6130002
    [No Abstract]   [Full Text] [Related]  

  • 12. The effects of calcium site occupancy and reagent length on reactivity of calmodulin lysyl residues with heterobifunctional aryl azides. Mapping interaction domains with specific calmodulin photoprobe derivatives.
    Dwyer LD; Crocker PJ; Watt DS; Vanaman TC
    J Biol Chem; 1992 Nov; 267(31):22606-15. PubMed ID: 1343568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct comparison of Ca2+ requirements for calmodulin interaction with and activation of protein phosphatase.
    Kincaid RL; Vaughan M
    Proc Natl Acad Sci U S A; 1986 Mar; 83(5):1193-7. PubMed ID: 3006040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of phosphorylation and mutation of tyrosine residues of calmodulin on its activation of the erythrocyte Ca(2+)-transporting ATPase.
    Sacks DB; Lopez MM; Li Z; Kosk-Kosicka D
    Eur J Biochem; 1996 Jul; 239(1):98-104. PubMed ID: 8706725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of ganglioside with specific peptide sequences as a mechanism for the modulation of calmodulin-dependent enzymes.
    Higashi H; Yoshida S; Sato K; Yamagata T
    J Biochem; 1996 Jul; 120(1):66-73. PubMed ID: 8864846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dityrosine formation in calmodulin: cross-linking and polymerization catalyzed by Arthromyces peroxidase.
    Malencik DA; Anderson SR
    Biochemistry; 1996 Apr; 35(14):4375-86. PubMed ID: 8605186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical synthesis and expression of a calmodulin gene designed for site-specific mutagenesis.
    Roberts DM; Crea R; Malecha M; Alvarado-Urbina G; Chiarello RH; Watterson DM
    Biochemistry; 1985 Sep; 24(19):5090-8. PubMed ID: 3000422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant calmodulin and the regulation of NAD kinase.
    Jarrett HW; Charbonneau H; Anderson JM; McCann RO; Cormier MJ
    Ann N Y Acad Sci; 1980; 356():119-29. PubMed ID: 6263144
    [No Abstract]   [Full Text] [Related]  

  • 19. Differential regulation of Ca2+/calmodulin-dependent enzymes by plant calmodulin isoforms and free Ca2+ concentration.
    Lee SH; Johnson JD; Walsh MP; Van Lierop JE; Sutherland C; Xu A; Snedden WA; Kosk-Kosicka D; Fromm H; Narayanan N; Cho MJ
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):299-306. PubMed ID: 10926857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of calmodulin-dependent NAD+ kinase by trypsin.
    Meijer L; Guerrier P
    Biochim Biophys Acta; 1982 Mar; 702(1):143-6. PubMed ID: 6279162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.