These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8389612)

  • 1. Bone ingrowth and mechanical properties of coralline hydroxyapatite 1 yr after implantation.
    Martin RB; Chapman MW; Sharkey NA; Zissimos SL; Bay B; Shors EC
    Biomaterials; 1993 Apr; 14(5):341-8. PubMed ID: 8389612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of operative fit and hydroxyapatite coating on the mechanical and biological response to porous implants.
    Dalton JE; Cook SD; Thomas KA; Kay JF
    J Bone Joint Surg Am; 1995 Jan; 77(1):97-110. PubMed ID: 7822360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of bone ingrowth on the strength and non-invasive assessment of a coralline hydroxyapatite material.
    Martin RB; Chapman MW; Holmes RE; Sartoris DJ; Shors EC; Gordon JE; Heitter DO; Sharkey NA; Zissimos AG
    Biomaterials; 1989 Sep; 10(7):481-8. PubMed ID: 2804236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coralline hydroxyapatite bone graft substitutes in a canine metaphyseal defect model: radiographic-biomechanical correlation.
    Sartoris DJ; Holmes RE; Tencer AF; Mooney V; Resnick D
    Skeletal Radiol; 1986; 15(8):635-41. PubMed ID: 3810188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous hydroxyapatite as a bone graft substitute in diaphyseal defects: a histometric study.
    Holmes RE; Bucholz RW; Mooney V
    J Orthop Res; 1987; 5(1):114-21. PubMed ID: 3029358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical and bone ingrowth properties of a polymer-coated, porous, synthetic, coralline hydroxyapatite bone-graft material.
    Tencer AF; Woodard PL; Swenson J; Brown KL
    Ann N Y Acad Sci; 1988; 523():157-72. PubMed ID: 2898222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Additive enhancement of implant fixation following combined treatment with rhTGF-beta2 and rhBMP-2 in a canine model.
    Sumner DR; Turner TM; Urban RM; Virdi AS; Inoue N
    J Bone Joint Surg Am; 2006 Apr; 88(4):806-17. PubMed ID: 16595471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coralline hydroxyapatite bone-graft substitutes in a canine diaphyseal defect model. Radiographic-histometric correlation.
    Sartoris DJ; Holmes RE; Bucholz RW; Mooney V; Resnick D
    Invest Radiol; 1987 Jul; 22(7):590-6. PubMed ID: 3623863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coralline hydroxyapatite bone-graft substitutes in a canine metaphyseal defect model. Radiographic-histometric correlation.
    Sartoris DJ; Holmes RE; Bucholz RW; Mooney V; Resnick D
    Invest Radiol; 1986 Nov; 21(11):851-7. PubMed ID: 2877959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone graft incorporation around titanium-alloy- and hydroxyapatite-coated implants in dogs.
    Søballe K; Hansen ES; Brockstedt-Rasmussen H; Pedersen CM; Bünger C
    Clin Orthop Relat Res; 1992 Jan; (274):282-93. PubMed ID: 1729014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transforming growth factor-beta stimulates bone ongrowth. Hydroxyapatite-coated implants studied in dogs.
    Lind M; Overgaard S; Nguyen T; Ongpipattanakul B; Bünger C; Søballe K
    Acta Orthop Scand; 1996 Dec; 67(6):611-6. PubMed ID: 9065077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The induction of bone by an osteogenic protein and the conduction of bone by porous hydroxyapatite: a laboratory study in the rabbit.
    Miller TA; Ishida K; Kobayashi M; Wollman JS; Turk AE; Holmes RE
    Plast Reconstr Surg; 1991 Jan; 87(1):87-95. PubMed ID: 1845782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous hydroxyapatite as a bone graft substitute in cranial reconstruction: a histometric study.
    Holmes RE; Hagler HK
    Plast Reconstr Surg; 1988 May; 81(5):662-71. PubMed ID: 2834761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revision, without cement, of aseptically loose, cemented total hip prostheses. Quantitative comparison of the effects of four types of medullary treatment on bone ingrowth in a canine model.
    Turner TM; Urban RM; Sumner DR; Galante JO
    J Bone Joint Surg Am; 1993 Jun; 75(6):845-62. PubMed ID: 8314825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of bone ingrowth and interface mechanics of a new porous 3D printed biomaterial: an animal study.
    Tanzer M; Chuang PJ; Ngo CG; Song L; TenHuisen KS
    Bone Joint J; 2019 Jun; 101-B(6_Supple_B):62-67. PubMed ID: 31146557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rate of vascularization of coralline hydroxyapatite ocular implants.
    Ferrone PJ; Dutton JJ
    Ophthalmology; 1992 Mar; 99(3):376-9. PubMed ID: 1373481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coralline hydroxyapatite bone graft substitutes in a canine diaphyseal defect model: radiographic features of failed and successful union.
    Sartoris DJ; Holmes RE; Bucholz RW; Resnick D
    Skeletal Radiol; 1986; 15(8):642-7. PubMed ID: 3810189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basic fibroblast growth factor promotes bone ingrowth in porous hydroxyapatite.
    Wang JS; Aspenberg P
    Clin Orthop Relat Res; 1996 Dec; (333):252-60. PubMed ID: 8981904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone formation in coralline hydroxyapatite. Effects of pore size studied in rabbits.
    Kühne JH; Bartl R; Frisch B; Hammer C; Jansson V; Zimmer M
    Acta Orthop Scand; 1994 Jun; 65(3):246-52. PubMed ID: 8042473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extraskeletal implantation of a porous hydroxyapatite ceramic.
    Piecuch JF
    J Dent Res; 1982 Dec; 61(12):1458-60. PubMed ID: 6294161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.