These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 8389745)

  • 1. Insight into the active-site structure and function of cytochrome oxidase by analysis of site-directed mutants of bacterial cytochrome aa3 and cytochrome bo.
    Hosler JP; Ferguson-Miller S; Calhoun MW; Thomas JW; Hill J; Lemieux L; Ma J; Georgiou C; Fetter J; Shapleigh J
    J Bioenerg Biomembr; 1993 Apr; 25(2):121-36. PubMed ID: 8389745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identity of the axial ligand of the high-spin heme in cytochrome oxidase: spectroscopic characterization of mutants in the bo-type oxidase of Escherichia coli and the aa3-type oxidase of Rhodobacter sphaeroides.
    Calhoun MW; Thomas JW; Hill JJ; Hosler JP; Shapleigh JP; Tecklenburg MM; Ferguson-Miller S; Babcock GT; Alben JO; Gennis RB
    Biochemistry; 1993 Oct; 32(40):10905-11. PubMed ID: 8399240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of glutamate-286 mutations in the aa(3)-type cytochrome c oxidase from Rhodobacter sphaeroides and the cytochrome bo(3) ubiquinol oxidase from Escherichia coli.
    Egawa T; Ganesan K; Lin MT; Yu MA; Hosler JP; Yeh SR; Rousseau DL; Gennis RB
    Biochim Biophys Acta; 2011 Oct; 1807(10):1342-8. PubMed ID: 21684251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prokaryotic models for mitochondrial cytochrome c oxidase.
    Gennis RB
    Biochem Soc Trans; 1993 Nov; 21(4):992-8. PubMed ID: 8132106
    [No Abstract]   [Full Text] [Related]  

  • 5. Polar residues in helix VIII of subunit I of cytochrome c oxidase influence the activity and the structure of the active site.
    Hosler JP; Shapleigh JP; Mitchell DM; Kim Y; Pressler MA; Georgiou C; Babcock GT; Alben JO; Ferguson-Miller S; Gennis RB
    Biochemistry; 1996 Aug; 35(33):10776-83. PubMed ID: 8718868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of heme and copper ligands in subunit I of the cytochrome bo complex in Escherichia coli.
    Minagawa J; Mogi T; Gennis RB; Anraku Y
    J Biol Chem; 1992 Jan; 267(3):2096-104. PubMed ID: 1309808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the ligands of the low spin heme of the cytochrome o ubiquinol oxidase complex using site-directed mutagenesis.
    Lemieux LJ; Calhoun MW; Thomas JW; Ingledew WJ; Gennis RB
    J Biol Chem; 1992 Jan; 267(3):2105-13. PubMed ID: 1309809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Definition of the catalytic site of cytochrome c oxidase: specific ligands of heme a and the heme a3-CuB center.
    Shapleigh JP; Hosler JP; Tecklenburg MM; Kim Y; Babcock GT; Gennis RB; Ferguson-Miller S
    Proc Natl Acad Sci U S A; 1992 Jun; 89(11):4786-90. PubMed ID: 1317571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of chimeric heme-copper respiratory oxidases using subunits I of Escherichia coli cytochrome b o and Halobacterium salinarium cytochrome aa3.
    Denda K; Mogi T; Anraku Y; Yamanaka T; Fukumori Y
    Biochem Biophys Res Commun; 1995 Dec; 217(2):428-36. PubMed ID: 7503718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substitutions of charged amino acid residues conserved in subunit I perturb the redox metal centers of the Escherichia coli bo-type ubiquinol oxidase.
    Kawasaki M; Mogi T; Anraku Y
    J Biochem; 1997 Aug; 122(2):422-9. PubMed ID: 9378723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blocking the K-pathway still allows rapid one-electron reduction of the binuclear center during the anaerobic reduction of the aa3-type cytochrome c oxidase from Rhodobacter sphaeroides.
    Ganesan K; Gennis RB
    Biochim Biophys Acta; 2010; 1797(6-7):619-24. PubMed ID: 20307488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic characterization of mutants supports the assignment of histidine-419 as the axial ligand of heme o in the binuclear center of the cytochrome bo ubiquinol oxidase from Escherichia coli.
    Calhoun MW; Lemieux LJ; Thomas JW; Hill JJ; Goswitz VC; Alben JO; Gennis RB
    Biochemistry; 1993 Dec; 32(48):13254-61. PubMed ID: 8241181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infrared and EPR studies on cyanide binding to the heme-copper binuclear center of cytochrome bo-type ubiquinol oxidase from Escherichia coli. Release of a CuB-cyano complex in the partially reduced state.
    Tsubaki M; Mogi T; Hori H; Sato-Watanabe M; Anraku Y
    J Biol Chem; 1996 Feb; 271(8):4017-22. PubMed ID: 8626734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substitution of asparagine for aspartate-135 in subunit I of the cytochrome bo ubiquinol oxidase of Escherichia coli eliminates proton-pumping activity.
    Thomas JW; Puustinen A; Alben JO; Gennis RB; Wikström M
    Biochemistry; 1993 Oct; 32(40):10923-8. PubMed ID: 8399242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis studies on subunit I of the aa3-type cytochrome c oxidase of Rhodobacter sphaeroides: a brief review of progress to date.
    Gennis RB
    Biochim Biophys Acta; 1992 Jul; 1101(2):184-7. PubMed ID: 1378758
    [No Abstract]   [Full Text] [Related]  

  • 16. Site-directed mutants of the cytochrome bo ubiquinol oxidase of Escherichia coli: amino acid substitutions for two histidines that are putative CuB ligands.
    Calhoun MW; Hill JJ; Lemieux LJ; Ingledew WJ; Alben JO; Gennis RB
    Biochemistry; 1993 Nov; 32(43):11524-9. PubMed ID: 8218219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of the Escherichia coli bo-type ubiquinol oxidase with a chimeric subunit II having the CuA-cytochrome c domain from the thermophilic Bacillus caa3-type cytochrome c oxidase.
    Uchida A; Kusano T; Mogi T; Anraku Y; Sone N
    J Biochem; 1997 Nov; 122(5):1004-9. PubMed ID: 9443817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring subunit-subunit interactions in the Escherichia coli bo-type ubiquinol oxidase by extragenic suppressor mutation analysis.
    Saiki K; Mogi T; Tsubaki M; Hori H; Anraku Y
    J Biol Chem; 1997 Jun; 272(23):14721-6. PubMed ID: 9169436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of mutations in the cytochrome b subunit of the bc1 complex of Rhodobacter sphaeroides that affect the quinone reductase site (Qc).
    Hacker B; Barquera B; Crofts AR; Gennis RB
    Biochemistry; 1993 Apr; 32(16):4403-10. PubMed ID: 8386545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of site-directed mutants locates a non-redox-active metal near the active site of cytochrome c oxidase of Rhodobacter sphaeroides.
    Hosler JP; Espe MP; Zhen Y; Babcock GT; Ferguson-Miller S
    Biochemistry; 1995 Jun; 34(23):7586-92. PubMed ID: 7779804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.