These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 8389820)

  • 61. An intracellular study of muscle primary afferents during fictive locomotion in the cat.
    Gossard JP; Cabelguen JM; Rossignol S
    J Neurophysiol; 1991 Apr; 65(4):914-26. PubMed ID: 2051210
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nonspiking interneurons in walking system of the cockroach.
    Pearson KG; Fourtner CR
    J Neurophysiol; 1975 Jan; 38(1):33-52. PubMed ID: 162945
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The effect of sensory feedback on crayfish posture and locomotion: I. Experimental analysis of closing the loop.
    Chung B; Bacqué-Cazenave J; Cofer DW; Cattaert D; Edwards DH
    J Neurophysiol; 2015 Mar; 113(6):1763-71. PubMed ID: 25540217
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Tests of the motor neuron model of the local pattern-generating circuits in the swimmeret system.
    Sherff CM; Mulloney B
    J Neurosci; 1996 Apr; 16(8):2839-59. PubMed ID: 8786458
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Functional organization of crayfish abdominal ganglia: II. Sensory afferents and extensor motor neurons.
    Leise EM; Hall WM; Mulloney B
    J Comp Neurol; 1987 Dec; 266(4):495-518. PubMed ID: 2449471
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Control of leech swimming activity by the cephalic ganglia.
    Brodfuehrer PD; Friesen WO
    J Neurobiol; 1986 Nov; 17(6):697-705. PubMed ID: 3794692
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Abdominal positioning interneurons in crayfish: projections to and synaptic activation by higher CNS centers.
    Larimer JL; Moore D
    J Exp Zool; 1984 Apr; 230(1):1-10. PubMed ID: 6726142
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Parallel 'phasic' and 'tonic' motor systems of the crayfish abdomen.
    Atwood H
    J Exp Biol; 2008 Jul; 211(Pt 14):2193-5. PubMed ID: 18587112
    [No Abstract]   [Full Text] [Related]  

  • 69. Characterization of a muscarinic current that regulates excitability of an identified insect motoneuron.
    Trimmer BA
    J Neurophysiol; 1994 Oct; 72(4):1862-73. PubMed ID: 7529822
    [TBL] [Abstract][Full Text] [Related]  

  • 70. How does the crayfish swimmeret system work? Insights from nearest-neighbor coupled oscillator models.
    Skinner FK; Kopell N; Mulloney B
    J Comput Neurosci; 1997 Apr; 4(2):151-60. PubMed ID: 9154521
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Calcium-dependent potassium channels play a critical role for burst termination in the locomotor network in lamprey.
    el Manira A; Tegnér J; Grillner S
    J Neurophysiol; 1994 Oct; 72(4):1852-61. PubMed ID: 7823105
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The cord stretch receptors in the abdominal nerve cord of the crayfish Cherax destructor: physiology and relationships.
    Drummond JM; Macmillan DL
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Jun; 188(5):349-57. PubMed ID: 12073080
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Proctolin and excitation of the crayfish swimmeret system.
    Acevedo LD; Hall WM; Mulloney B
    J Comp Neurol; 1994 Jul; 345(4):612-27. PubMed ID: 7962704
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cholinergic transmission at the first synapse of the circuit mediating the crayfish lateral giant escape reaction.
    Miller MW; Vu ET; Krasne FB
    J Neurophysiol; 1992 Dec; 68(6):2174-84. PubMed ID: 1337103
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The activity of abdominal stretch receptors during non-giant swimming in the crayfish Cherax destructor and their role in hydrodynamic efficiency.
    McCarthy B; Daws A; Macmillan DL
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Apr; 190(4):291-9. PubMed ID: 14872259
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Crayfish escape behavior: production of tailflips without giant fiber activity.
    Kramer AP; Krasne FB
    J Neurophysiol; 1984 Aug; 52(2):189-211. PubMed ID: 6090603
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mechanisms of pattern generation underlying swimming in Tritonia. IV. Gating of central pattern generator.
    Getting PA; Dekin MS
    J Neurophysiol; 1985 Feb; 53(2):466-80. PubMed ID: 2984350
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The activity of interneurons during locomotion in the in vitro necturus spinal cord.
    Wheatley M; Jovanović K; Stein RB; Lawson V
    J Neurophysiol; 1994 Jun; 71(6):2025-32. PubMed ID: 7931500
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Analysis of postural motoneuron activity in crayfish abdomen. II. Coordination by excitatory and inhibitory connections between motoneurons.
    Tatton WG; Sokolove PG
    J Neurophysiol; 1975 Mar; 38(2):332-46. PubMed ID: 165271
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Physiological and morphological characterization of anaxonic non-spiking interneurons in the crayfish motor control system.
    Takahata M; Nagayama T; Hisada M
    Brain Res; 1981 Dec; 226(1-2):309-14. PubMed ID: 7296293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.