These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8389831)

  • 21. Pyloric motor pattern modification by a newly identified projection neuron in the crab stomatogastric nervous system.
    Norris BJ; Coleman MJ; Nusbaum MP
    J Neurophysiol; 1996 Jan; 75(1):97-108. PubMed ID: 8822544
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identified proprioceptive afferents and motor rhythm entrainment in the crayfish walking system.
    Elson RC; Sillar KT; Bush BM
    J Neurophysiol; 1992 Mar; 67(3):530-46. PubMed ID: 1578243
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cholinergic control of the walking network in the crayfish Procambarus clarkii.
    Cattaert D; Pearlstein E; Clarac F
    J Physiol Paris; 1995; 89(4-6):209-20. PubMed ID: 8861819
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of locomotion in marine mollusc Clione limacina. III. On the origin of locomotory rhythm.
    Arshavsky YuI ; Beloozerova IN; Orlovsky GN; Panchin YuV ; Pavlova GA
    Exp Brain Res; 1985; 58(2):273-84. PubMed ID: 2581799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A separate local pattern-generating circuit controls the movements of each swimmeret in crayfish.
    Murchison D; Chrachri A; Mulloney B
    J Neurophysiol; 1993 Dec; 70(6):2620-31. PubMed ID: 8120602
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The peripheral and central nervous organization of the locust coxo-trochanteral joint.
    Bräunig P
    J Neurobiol; 1982 Sep; 13(5):413-33. PubMed ID: 7130981
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distinct rhythmic locomotor patterns can be generated by a simple adaptive neural circuit: biology, simulation, and VLSI implementation.
    Ryckebusch S; Wehr M; Laurent G
    J Comput Neurosci; 1994 Dec; 1(4):339-58. PubMed ID: 8792239
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensory-evoked pocket scratch motor patterns in the in vitro turtle spinal cord: reduction of excitability by an N-methyl-D-aspartate antagonist.
    Currie SN; Lee S
    J Neurophysiol; 1996 Jul; 76(1):81-92. PubMed ID: 8836211
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators.
    Juvin L; Simmers J; Morin D
    J Physiol; 2007 Aug; 583(Pt 1):115-28. PubMed ID: 17569737
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the femur-tibia joint.
    Akay T; Bässler U; Gerharz P; Büschges A
    J Neurophysiol; 2001 Feb; 85(2):594-604. PubMed ID: 11160496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple neural oscillators and muscle feedback are required for the intestinal fed state motor program.
    Chambers JD; Bornstein JC; Thomas EA
    PLoS One; 2011 May; 6(5):e19597. PubMed ID: 21573176
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Endogenous rhythm and pattern-generating circuit interactions in cockroach motor centres.
    David I; Holmes P; Ayali A
    Biol Open; 2016 Sep; 5(9):1229-40. PubMed ID: 27422902
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neural control and coordination of jumping in froghopper insects.
    Burrows M
    J Neurophysiol; 2007 Jan; 97(1):320-30. PubMed ID: 17021026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physiology, pharmacology, and topography of cholinergic neocortical oscillations in vitro.
    Lukatch HS; MacIver MB
    J Neurophysiol; 1997 May; 77(5):2427-45. PubMed ID: 9163368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of group II and III metabotropic glutamate receptors in rhythmic patterns of the neonatal rat spinal cord in vitro.
    Taccola G; Marchetti C; Nistri A
    Exp Brain Res; 2004 Jun; 156(4):495-504. PubMed ID: 15007577
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proprioceptive sensory neurons of a locust leg receive rhythmic presynpatic inhibition during walking.
    Wolf H; Burrows M
    J Neurosci; 1995 Aug; 15(8):5623-36. PubMed ID: 7643206
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intra- and intersegmental influences among central pattern generating networks in the walking system of the stick insect.
    Mantziaris C; Bockemühl T; Holmes P; Borgmann A; Daun S; Büschges A
    J Neurophysiol; 2017 Oct; 118(4):2296-2310. PubMed ID: 28724783
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors.
    Tegnér J; Matsushima T; el Manira A; Grillner S
    J Neurophysiol; 1993 Mar; 69(3):647-57. PubMed ID: 8385187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pilocarpine-induced motor rhythms in the isolated locust suboesophageal ganglion.
    Rast G; BrÄUnig P
    J Exp Biol; 1997; 200(Pt 16):2197-207. PubMed ID: 9320107
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Asymmetric control of inspiratory and expiratory phases by excitability in the respiratory network of neonatal mice in vitro.
    Del Negro CA; Kam K; Hayes JA; Feldman JL
    J Physiol; 2009 Mar; 587(Pt 6):1217-31. PubMed ID: 19171658
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.