BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 8390041)

  • 1. The human CL100 gene encodes a Tyr/Thr-protein phosphatase which potently and specifically inactivates MAP kinase and suppresses its activation by oncogenic ras in Xenopus oocyte extracts.
    Alessi DR; Smythe C; Keyse SM
    Oncogene; 1993 Jul; 8(7):2015-20. PubMed ID: 8390041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential regulation of the MAP, SAP and RK/p38 kinases by Pyst1, a novel cytosolic dual-specificity phosphatase.
    Groom LA; Sneddon AA; Alessi DR; Dowd S; Keyse SM
    EMBO J; 1996 Jul; 15(14):3621-32. PubMed ID: 8670865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterisation of a uniquely regulated threonine, tyrosine phosphatase (TYP 1) which inactivates ERK2 and p54jnk.
    King AG; Ozanne BW; Smythe C; Ashworth A
    Oncogene; 1995 Dec; 11(12):2553-63. PubMed ID: 8545112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The CL100 gene, which encodes a dual specificity (Tyr/Thr) MAP kinase phosphatase, is highly conserved and maps to human chromosome 5q34.
    Emslie EA; Jones TA; Sheer D; Keyse SM
    Hum Genet; 1994 May; 93(5):513-6. PubMed ID: 8168826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of p42 MAP kinase by protein phosphatase 2A and a protein tyrosine phosphatase, but not CL100, in various cell lines.
    Alessi DR; Gomez N; Moorhead G; Lewis T; Keyse SM; Cohen P
    Curr Biol; 1995 Mar; 5(3):283-95. PubMed ID: 7780739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual specificity phosphatase 1/CL100 is a direct transcriptional target of E2F-1 in the apoptotic response to oxidative stress.
    Wang J; Yin DP; Liu YX; Baer R; Yin Y
    Cancer Res; 2007 Jul; 67(14):6737-44. PubMed ID: 17638884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. XCL100, an inducible nuclear MAP kinase phosphatase from Xenopus laevis: its role in MAP kinase inactivation in differentiated cells and its expression during early development.
    Lewis T; Groom LA; Sneddon AA; Smythe C; Keyse SM
    J Cell Sci; 1995 Aug; 108 ( Pt 8)():2885-96. PubMed ID: 7593328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MPF amplification in Xenopus oocyte extracts depends on a two-step activation of cdc25 phosphatase.
    Karaïskou A; Cayla X; Haccard O; Jessus C; Ozon R
    Exp Cell Res; 1998 Nov; 244(2):491-500. PubMed ID: 9806800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic activation of mitogen-activated protein (MAP) kinase phosphatase-1 by binding to p38 MAP kinase: critical role of the p38 C-terminal domain in its negative regulation.
    Hutter D; Chen P; Barnes J; Liu Y
    Biochem J; 2000 Nov; 352 Pt 1(Pt 1):155-63. PubMed ID: 11062068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitogen-activated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients.
    Vicent S; Garayoa M; López-Picazo JM; Lozano MD; Toledo G; Thunnissen FB; Manzano RG; Montuenga LM
    Clin Cancer Res; 2004 Jun; 10(11):3639-49. PubMed ID: 15173070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II.
    Sturgill TW; Ray LB; Erikson E; Maller JL
    Nature; 1988 Aug; 334(6184):715-8. PubMed ID: 2842685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The MAP-kinase ERK2 is a specific substrate of the protein tyrosine phosphatase HePTP.
    Pettiford SM; Herbst R
    Oncogene; 2000 Feb; 19(7):858-69. PubMed ID: 10702794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative effects of insulin on the activation of the Raf/Mos-dependent MAP kinase cascade in vitellogenic versus postvitellogenic Xenopus oocytes.
    Chesnel F; Bonnec G; Tardivel A; Boujard D
    Dev Biol; 1997 Aug; 188(1):122-33. PubMed ID: 9245517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Tyr/Ser protein phosphatase encoded by vaccinia virus.
    Guan KL; Broyles SS; Dixon JE
    Nature; 1991 Mar; 350(6316):359-62. PubMed ID: 1848923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constitutively active MAP kinase kinase (MEK1) stimulates SAP kinase and c-Jun transcriptional activity in U937 human leukemic cells.
    Franklin CC; Kraft AS
    Oncogene; 1995 Dec; 11(11):2365-74. PubMed ID: 8570188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a variant of PAC-1 in large granular lymphocyte leukemia.
    Kothapalli R; Yoder SJ; Kusmartseva I; Loughran TP
    Protein Expr Purif; 2003 Nov; 32(1):52-60. PubMed ID: 14680939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel human ERK phosphatase regulates H-ras and v-raf signal transduction.
    Shin DY; Ishibashi T; Choi TS; Chung E; Chung IY; Aaronson SA; Bottaro DP
    Oncogene; 1997 Jun; 14(22):2633-9. PubMed ID: 9178761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases.
    Owens DM; Keyse SM
    Oncogene; 2007 May; 26(22):3203-13. PubMed ID: 17496916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saccharomyces cerevisiae Yak1p protein kinase autophosphorylates on tyrosine residues and phosphorylates myelin basic protein on a C-terminal serine residue.
    Kassis S; Melhuish T; Annan RS; Chen SL; Lee JC; Livi GP; Creasy CL
    Biochem J; 2000 Jun; 348 Pt 2(Pt 2):263-72. PubMed ID: 10816418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase.
    Anderson NG; Maller JL; Tonks NK; Sturgill TW
    Nature; 1990 Feb; 343(6259):651-3. PubMed ID: 2154696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.