These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 8390041)
1. The human CL100 gene encodes a Tyr/Thr-protein phosphatase which potently and specifically inactivates MAP kinase and suppresses its activation by oncogenic ras in Xenopus oocyte extracts. Alessi DR; Smythe C; Keyse SM Oncogene; 1993 Jul; 8(7):2015-20. PubMed ID: 8390041 [TBL] [Abstract][Full Text] [Related]
2. Differential regulation of the MAP, SAP and RK/p38 kinases by Pyst1, a novel cytosolic dual-specificity phosphatase. Groom LA; Sneddon AA; Alessi DR; Dowd S; Keyse SM EMBO J; 1996 Jul; 15(14):3621-32. PubMed ID: 8670865 [TBL] [Abstract][Full Text] [Related]
3. Isolation and characterisation of a uniquely regulated threonine, tyrosine phosphatase (TYP 1) which inactivates ERK2 and p54jnk. King AG; Ozanne BW; Smythe C; Ashworth A Oncogene; 1995 Dec; 11(12):2553-63. PubMed ID: 8545112 [TBL] [Abstract][Full Text] [Related]
4. The CL100 gene, which encodes a dual specificity (Tyr/Thr) MAP kinase phosphatase, is highly conserved and maps to human chromosome 5q34. Emslie EA; Jones TA; Sheer D; Keyse SM Hum Genet; 1994 May; 93(5):513-6. PubMed ID: 8168826 [TBL] [Abstract][Full Text] [Related]
5. Inactivation of p42 MAP kinase by protein phosphatase 2A and a protein tyrosine phosphatase, but not CL100, in various cell lines. Alessi DR; Gomez N; Moorhead G; Lewis T; Keyse SM; Cohen P Curr Biol; 1995 Mar; 5(3):283-95. PubMed ID: 7780739 [TBL] [Abstract][Full Text] [Related]
6. Dual specificity phosphatase 1/CL100 is a direct transcriptional target of E2F-1 in the apoptotic response to oxidative stress. Wang J; Yin DP; Liu YX; Baer R; Yin Y Cancer Res; 2007 Jul; 67(14):6737-44. PubMed ID: 17638884 [TBL] [Abstract][Full Text] [Related]
7. XCL100, an inducible nuclear MAP kinase phosphatase from Xenopus laevis: its role in MAP kinase inactivation in differentiated cells and its expression during early development. Lewis T; Groom LA; Sneddon AA; Smythe C; Keyse SM J Cell Sci; 1995 Aug; 108 ( Pt 8)():2885-96. PubMed ID: 7593328 [TBL] [Abstract][Full Text] [Related]
8. MPF amplification in Xenopus oocyte extracts depends on a two-step activation of cdc25 phosphatase. Karaïskou A; Cayla X; Haccard O; Jessus C; Ozon R Exp Cell Res; 1998 Nov; 244(2):491-500. PubMed ID: 9806800 [TBL] [Abstract][Full Text] [Related]
9. Catalytic activation of mitogen-activated protein (MAP) kinase phosphatase-1 by binding to p38 MAP kinase: critical role of the p38 C-terminal domain in its negative regulation. Hutter D; Chen P; Barnes J; Liu Y Biochem J; 2000 Nov; 352 Pt 1(Pt 1):155-63. PubMed ID: 11062068 [TBL] [Abstract][Full Text] [Related]
10. Mitogen-activated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients. Vicent S; Garayoa M; López-Picazo JM; Lozano MD; Toledo G; Thunnissen FB; Manzano RG; Montuenga LM Clin Cancer Res; 2004 Jun; 10(11):3639-49. PubMed ID: 15173070 [TBL] [Abstract][Full Text] [Related]
11. Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Sturgill TW; Ray LB; Erikson E; Maller JL Nature; 1988 Aug; 334(6184):715-8. PubMed ID: 2842685 [TBL] [Abstract][Full Text] [Related]
12. The MAP-kinase ERK2 is a specific substrate of the protein tyrosine phosphatase HePTP. Pettiford SM; Herbst R Oncogene; 2000 Feb; 19(7):858-69. PubMed ID: 10702794 [TBL] [Abstract][Full Text] [Related]
13. Comparative effects of insulin on the activation of the Raf/Mos-dependent MAP kinase cascade in vitellogenic versus postvitellogenic Xenopus oocytes. Chesnel F; Bonnec G; Tardivel A; Boujard D Dev Biol; 1997 Aug; 188(1):122-33. PubMed ID: 9245517 [TBL] [Abstract][Full Text] [Related]
14. A Tyr/Ser protein phosphatase encoded by vaccinia virus. Guan KL; Broyles SS; Dixon JE Nature; 1991 Mar; 350(6316):359-62. PubMed ID: 1848923 [TBL] [Abstract][Full Text] [Related]
15. Constitutively active MAP kinase kinase (MEK1) stimulates SAP kinase and c-Jun transcriptional activity in U937 human leukemic cells. Franklin CC; Kraft AS Oncogene; 1995 Dec; 11(11):2365-74. PubMed ID: 8570188 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a variant of PAC-1 in large granular lymphocyte leukemia. Kothapalli R; Yoder SJ; Kusmartseva I; Loughran TP Protein Expr Purif; 2003 Nov; 32(1):52-60. PubMed ID: 14680939 [TBL] [Abstract][Full Text] [Related]
17. A novel human ERK phosphatase regulates H-ras and v-raf signal transduction. Shin DY; Ishibashi T; Choi TS; Chung E; Chung IY; Aaronson SA; Bottaro DP Oncogene; 1997 Jun; 14(22):2633-9. PubMed ID: 9178761 [TBL] [Abstract][Full Text] [Related]
18. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Owens DM; Keyse SM Oncogene; 2007 May; 26(22):3203-13. PubMed ID: 17496916 [TBL] [Abstract][Full Text] [Related]
19. Saccharomyces cerevisiae Yak1p protein kinase autophosphorylates on tyrosine residues and phosphorylates myelin basic protein on a C-terminal serine residue. Kassis S; Melhuish T; Annan RS; Chen SL; Lee JC; Livi GP; Creasy CL Biochem J; 2000 Jun; 348 Pt 2(Pt 2):263-72. PubMed ID: 10816418 [TBL] [Abstract][Full Text] [Related]
20. Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Anderson NG; Maller JL; Tonks NK; Sturgill TW Nature; 1990 Feb; 343(6259):651-3. PubMed ID: 2154696 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]