These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 8390356)
21. Conformational change of the chloroplast ATP synthase on the enzyme activation process detected by the trypsin sensitivity of the gamma subunit. Sugiyama K; Hisabori T Biochem Biophys Res Commun; 2003 Feb; 301(2):311-6. PubMed ID: 12565861 [TBL] [Abstract][Full Text] [Related]
22. Evidence that localized energy coupling in thylakoids can continue beyond the energetic threshold onset into steady illumination. Renganathan M; Pan RS; Ewy RG; Theg SM; Allnutt FC; Dilley RA Biochim Biophys Acta; 1991 Aug; 1059(1):16-27. PubMed ID: 1651763 [TBL] [Abstract][Full Text] [Related]
23. Proton efflux through the chloroplast ATP synthase (CF0 . CF1) in the presence of sulfhydryl-modifying agents. Underwood C; Gould JM Biochim Biophys Acta; 1980 Feb; 589(2):287-98. PubMed ID: 6243967 [TBL] [Abstract][Full Text] [Related]
24. Light-dependent ATP synthesis in mitochondria. Vekshin NL Biochem Int; 1991 Nov; 25(4):603-11. PubMed ID: 1667719 [TBL] [Abstract][Full Text] [Related]
25. Conformational changes in cytochrome aa3 and ATP synthetase of the mitochondrial membrane and their role in mitochondrial energy transduction. Wikström MK; Saari HT Mol Cell Biochem; 1976 Mar; 11(1):17-33. PubMed ID: 5667 [TBL] [Abstract][Full Text] [Related]
26. Flip-flop model of energy interconversion by ATP synthetase. Repke KR; Schön R Acta Biol Med Ger; 1974; 33(1):K27-38. PubMed ID: 4278420 [No Abstract] [Full Text] [Related]
27. The chloroplast ATP synthase: structural changes during catalysis. Richter ML; Gao F J Bioenerg Biomembr; 1996 Oct; 28(5):443-9. PubMed ID: 8951092 [TBL] [Abstract][Full Text] [Related]
28. The effects of partial uncoupling upon the kinetics of ATP synthesis by vesicles from Paracoccus denitrificans and by bovine heart submitochondrial particles. Implications for the mechanism of the proton-translocating ATP synthase. McCarthy JE; Ferguson SJ Eur J Biochem; 1983 May; 132(2):425-31. PubMed ID: 6301834 [TBL] [Abstract][Full Text] [Related]
29. Interconversion of two distinct states of active CF0-CF1 (chloroplast ATPase complex) in chloroplasts. Komatsu-Takaki M J Biol Chem; 1986 Jan; 261(3):1116-9. PubMed ID: 2867997 [TBL] [Abstract][Full Text] [Related]
30. Polymorphism and conformational dynamics of F1-ATPases from bacterial membranes. A model for the regulation of these enzymes on the basis of molecular plasticity. Muñoz E Biochim Biophys Acta; 1982 May; 650(4):233-65. PubMed ID: 6178434 [No Abstract] [Full Text] [Related]
31. Crystallization of the c14-rotor of the chloroplast ATP synthase reveals that it contains pigments. Varco-Merth B; Fromme R; Wang M; Fromme P Biochim Biophys Acta; 2008; 1777(7-8):605-12. PubMed ID: 18515064 [TBL] [Abstract][Full Text] [Related]
32. The rotary binding change mechanism of ATP synthases. Cross RL Biochim Biophys Acta; 2000 May; 1458(2-3):270-5. PubMed ID: 10838043 [TBL] [Abstract][Full Text] [Related]
33. Energy-dependent changes in the conformation of the epsilon subunit of the chloroplast ATP synthase. Richter ML; McCarty RE J Biol Chem; 1987 Nov; 262(31):15037-40. PubMed ID: 2959662 [TBL] [Abstract][Full Text] [Related]
34. Light-dependent modification of spinach chloroplast coupling factor 1 by permanganate ion. Data DB; Ryrie IJ; Jagendorf AT J Biol Chem; 1974 Jul; 249(14):4404-11. PubMed ID: 4276458 [No Abstract] [Full Text] [Related]
35. Energy-dependent conformational changes in the epsilon subunit of the chloroplast ATP synthase (CF0CF1). Komatsu-Takaki M J Biol Chem; 1989 Oct; 264(30):17750-3. PubMed ID: 2530214 [TBL] [Abstract][Full Text] [Related]
36. Influence of divalent cations on nucleotide exchange and ATPase activity of chloroplast coupling factor 1. Digel JG; Moore ND; McCarty RE Biochemistry; 1998 Dec; 37(49):17209-15. PubMed ID: 9860834 [TBL] [Abstract][Full Text] [Related]
37. Vesicular preparation of a highly coupled ATPase-ATP synthase complex from pig heart mitochondria. Penin F; Godinot C; Comte J; Gautheron DC Biochim Biophys Acta; 1982 Feb; 679(2):198-209. PubMed ID: 6277375 [TBL] [Abstract][Full Text] [Related]
38. F0 of Escherichia coli ATP-synthase containing mutant and wild-type carbodiimide-binging proteins is impaired in H+ -conduction. Friedl P; Friedl C; Schairer HU FEBS Lett; 1980 Oct; 119(2):254-6. PubMed ID: 6253323 [No Abstract] [Full Text] [Related]
39. Transport protons do not participate in ATP synthesis/hydrolysis at the nucleotide binding site of the H(+)-ATPase from chloroplasts. Labahn A; Gräber P FEBS Lett; 1992 Nov; 313(2):177-80. PubMed ID: 1330704 [TBL] [Abstract][Full Text] [Related]
40. 31p NMR saturation transfer measurements of the steady state rates of creatine kinase and ATP synthetase in the rat brain. Shoubridge EA; Briggs RW; Radda GK FEBS Lett; 1982 Apr; 140(2):289-92. PubMed ID: 6282642 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]